import pytest import torch import colossalai from colossalai.booster import Booster from colossalai.booster.plugin import LowLevelZeroPlugin from colossalai.booster.plugin.low_level_zero_plugin import LowLevelZeroModel from colossalai.moe.manager import MOE_MANAGER from colossalai.testing import rerun_if_address_is_in_use, spawn from tests.test_moe.moe_utils import MoeGradientHandler, MoeModel def split_ddp_grad(grad, world_size): with torch.no_grad(): grad = grad.clone().detach().flatten() padding_size = (world_size - grad.numel() % world_size) % world_size if padding_size > 0: grad = torch.nn.functional.pad(grad, [0, padding_size]) splited_grad = grad.split(grad.numel() // world_size) return splited_grad def run_fwd_bwd(model, data, label, criterion, optimizer, enable_autocast=False): model.train() with torch.cuda.amp.autocast(enabled=enable_autocast): if criterion: y = model(data) loss = criterion(y, label) else: loss = model(data, label) loss = loss.float() if isinstance(model, LowLevelZeroModel): optimizer.backward(loss) else: loss.backward() return y def run_zero_optim_test(local_rank, world_size, stage=1): criterion = torch.nn.CrossEntropyLoss() zero_model = MoeModel() zero_optimizer = torch.optim.Adam(zero_model.parameters()) plugin = LowLevelZeroPlugin(stage=stage, precision="fp32") booster = Booster(plugin=plugin) zero_model, zero_optimizer, _, _, _ = booster.boost(zero_model, zero_optimizer) torch_model = MoeModel() for zero_param, torch_param in zip(zero_model.parameters(), torch_model.parameters()): torch_param.data.copy_(zero_param.data) torch_optimizer = torch.optim.Adam(torch_model.parameters()) torch_model = torch_model.cuda() grad_handler = MoeGradientHandler(torch_model) for _ in range(2): data = torch.randn(16, 4).cuda() / (local_rank + 1) label = torch.randint(0, 4, (16,)).cuda() run_fwd_bwd(torch_model, data, label, criterion, None) run_fwd_bwd(zero_model, data, label, criterion, zero_optimizer) grad_handler.handle_gradient() torch_optimizer.step() zero_optimizer.step() for (torch_name, torch_param), (zero_name, zero_param) in zip( torch_model.named_parameters(), zero_model.named_parameters() ): assert torch.allclose( torch_param.data, zero_param.data ), f"{torch_name}\ntorch_param {torch_param.data}\nzero_param {zero_param.data}" torch_optimizer.zero_grad() zero_optimizer.zero_grad() def run_dist(rank, world_size, port): colossalai.launch(config=dict(), rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl") MOE_MANAGER.setup(parallel="EP") run_zero_optim_test(rank, world_size, stage=1) run_zero_optim_test(rank, world_size, stage=2) @pytest.mark.dist @pytest.mark.parametrize("world_size", [2]) @rerun_if_address_is_in_use() def test_moe_zero_optim(world_size): spawn(run_dist, world_size) if __name__ == "__main__": test_moe_zero_optim(world_size=2)