import time from typing import Optional import torch import torch.distributed as dist import tqdm import wandb from torch.optim import Optimizer from torch.optim.lr_scheduler import _LRScheduler from torch.utils.data import DataLoader from colossalai.logging import DistributedLogger from .base import SLTrainer from .strategies import GeminiStrategy, Strategy from .utils import is_rank_0, to_device class SFTTrainer(SLTrainer): """ Trainer to use while training reward model. Args: model (torch.nn.Module): the model to train strategy (Strategy): the strategy to use for training optim(Optimizer): the optimizer to use for training lr_scheduler(_LRScheduler): the lr scheduler to use for training max_epochs (int, defaults to 2): the number of epochs to train accumulation_steps (int, defaults to 8): the number of steps to accumulate gradients """ def __init__( self, model, strategy: Strategy, optim: Optimizer, lr_scheduler: _LRScheduler, max_epochs: int = 2, accumulation_steps: int = 8, ) -> None: if accumulation_steps > 1: assert not isinstance(strategy, GeminiStrategy), \ "Accumulation steps are not supported in stage 3 of ColossalAI" super().__init__(strategy, max_epochs, model, optim) self.accumulation_steps = accumulation_steps self.scheduler = lr_scheduler def _train(self, epoch: int): self.model.train() for batch_id, batch in enumerate(self.train_dataloader): batch = to_device(batch, torch.cuda.current_device()) outputs = self.model(batch["input_ids"], attention_mask=batch["attention_mask"], labels=batch["labels"]) loss = outputs.loss loss = loss / self.accumulation_steps self.strategy.backward(loss, self.model, self.optimizer) self.total_loss += loss.item() # gradient accumulation if (batch_id + 1) % self.accumulation_steps == 0: self.strategy.optimizer_step(self.optimizer) self.optimizer.zero_grad() self.scheduler.step() if is_rank_0() and self.use_wandb: wandb.log({ "loss": self.total_loss / self.accumulation_steps, "lr": self.scheduler.get_last_lr()[0], "epoch": epoch, "batch_id": batch_id }) self.total_loss = 0 self.step_bar.update() def _eval(self, epoch: int): if self.eval_dataloader is not None: self.model.eval() with torch.no_grad(): loss_sum, num_seen = 0, 0 for batch in self.eval_dataloader: batch = to_device(batch, torch.cuda.current_device()) outputs = self.model(batch["input_ids"], attention_mask=batch["attention_mask"], labels=batch["labels"]) loss = outputs.loss loss_sum += loss.item() num_seen += batch["input_ids"].size(0) loss_mean = loss_sum / num_seen if dist.get_rank() == 0: self.logger.info(f'Eval Epoch {epoch}/{self.max_epochs} loss {loss_mean}') def _before_fit(self, train_dataloader: DataLoader, eval_dataloader: Optional[DataLoader] = None, logger: Optional[DistributedLogger] = None, use_wandb: bool = False): """ Args: train_dataloader: the dataloader to use for training eval_dataloader: the dataloader to use for evaluation """ self.train_dataloader = train_dataloader self.eval_dataloader = eval_dataloader self.logger = logger self.use_wandb = use_wandb if use_wandb: wandb.init(project="Coati", name=time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())) wandb.watch(self.model) self.total_loss = 0 self.no_epoch_bar = True self.step_bar = tqdm.trange( len(self.train_dataloader) // self.accumulation_steps * self.max_epochs, desc=f'steps', disable=not is_rank_0() )