import argparse import os import warnings from typing import Any, Callable, Dict, List, Tuple, Type, Union import torch import torch.distributed.rpc as rpc import torch.multiprocessing as mp from torch._C._distributed_rpc import _is_current_rpc_agent_set from torch.futures import Future from colossalai.initialize import launch from colossalai.pipeline.pipeline_process_group import ppg def pyobj_map(obj: Any, fn: Callable, process_types: Union[Type, Tuple[Type]] = ()) -> Any: if isinstance(obj, process_types): return fn(obj) elif type(obj) is dict: return {k: pyobj_map(obj[k], fn, process_types) for k in obj} elif type(obj) is tuple: return tuple(pyobj_map(o, fn, process_types) for o in obj) elif type(obj) is list: return list(pyobj_map(o, fn, process_types) for o in obj) else: return obj def pytree_map(obj: Any, fn: Callable, process_types: Union[Type, Tuple[Type]] = (), map_all: bool = False) -> Any: """process object recursively, like pytree Args: obj (:class:`Any`): object to process fn (:class:`Callable`): a function to process subobject in obj process_types (:class: `type | tuple[type]`): types to determine the type to process map_all (:class: `bool`): if map_all is True, then any type of element will use fn Returns: :class:`Any`: returns have the same structure of `obj` and type in process_types after map of `fn` """ if isinstance(obj, dict): return {k: pytree_map(obj[k], fn, process_types, map_all) for k in obj} elif isinstance(obj, tuple): return tuple(pytree_map(o, fn, process_types, map_all) for o in obj) elif isinstance(obj, list): return list(pytree_map(o, fn, process_types, map_all) for o in obj) elif isinstance(obj, process_types): return fn(obj) else: return fn(obj) if map_all else obj def tensor_shape_list(obj): return pytree_map(obj, fn=lambda x: x.shape, process_types=torch.Tensor) def get_batch_lengths(batch): lengths = [] pytree_map(batch, fn=lambda x: lengths.append(len(x)), process_types=torch.Tensor) return lengths def split_batch(batch: Any, start, stop, device: str): if device == 'cuda': fn = lambda x: x[start:stop].cuda() else: fn = lambda x: x[start:stop] return pytree_map(batch, fn=fn, process_types=torch.Tensor) def type_detail(obj): return pytree_map(obj, lambda x: type(x), map_all=True) def pytree_filter(fn, obj, process_types): if obj is None: return None filters = [] def condition_append(obj): if fn(obj): filters.append(obj) pytree_map(obj, fn=condition_append, process_types=process_types) return filters def get_real_args_kwargs(args_or_kwargs): args_or_kwargs = pytree_map(args_or_kwargs, fn=lambda x: x.wait(), process_types=Future) # TODO : combine producer and consumer # by default, merge all args in the output args or kwargs if args_or_kwargs is not None: if isinstance(args_or_kwargs, dict): pass else: flatten_args = [] pytree_map(args_or_kwargs, fn=lambda x: flatten_args.append(x), map_all=True) args_or_kwargs = flatten_args return args_or_kwargs def run_worker(rank, args, master_func): os.environ['MASTER_ADDR'] = args.master_addr os.environ['MASTER_PORT'] = args.master_port device = args.device world_size = args.world_size dp_degree = args.dp_degree tp_degree = args.tp_degree num_worker_threads = args.num_worker_threads host = args.master_addr port = args.master_port backend = 'nccl' if device == 'cuda' else 'gloo' launch(dict(), rank, world_size, host, int(port), backend, verbose=False) ppg.set_global_info(rank=rank, world_size=world_size, dp_degree=dp_degree, tp_degree=tp_degree, num_worker_threads=num_worker_threads, device=device) ppg.args = args # in rpc mode, only rank 0 is needed to be coded if rank == 0: master_func(args) # barrier here if _is_current_rpc_agent_set(): rpc.shutdown() else: warnings.warn("RPC has not been initialized") def rpc_run(args, master_func): world_size = args.world_size mp.spawn(run_worker, args=(args, master_func), nprocs=world_size) def parse_args(): parser = argparse.ArgumentParser() parser.add_argument('--epoch', type=int, default=1) parser.add_argument('--world_size', type=int, default=2) parser.add_argument('--batch_size', type=int, default=16) parser.add_argument('--dp_degree', type=int, default=1) parser.add_argument('--tp_degree', type=int, default=1) parser.add_argument('--num_microbatches', type=int, default=2) parser.add_argument('--chunk', type=int, default=1) parser.add_argument('--use_checkpoint', action='store_true') parser.add_argument('--optimizer', type=str, choices=['SGD', 'Adam', 'RMSprop'], default='SGD') parser.add_argument('--device', type=str, choices=['cpu', 'cuda'], default='cuda') parser.add_argument('--master_addr', type=str, default='localhost') parser.add_argument('--master_port', type=str, default='29020') parser.add_argument('--num_worker_threads', type=str, default=128) return parser.parse_args()