import threading from typing import Callable, Dict, List import torch import torch.distributed as dist from torch._C._distributed_rpc import PyRRef from torch.futures import Future from colossalai.pipeline.pipeline_process_group import ppg from colossalai.pipeline.rpc._pipeline_base import Phase, PipelineEngineBase, UniqueKey, WorkerBase, WorkItem # Implementation of different Pipeline schedule # Worker defines the worker for each stage # PipelineEngine is the class for use class FillDrainWorker(WorkerBase): def _get_work_item_key(self) -> UniqueKey: # execute backward first (if backward phase in work_list) num_microbatches = self.num_microbatches if self.forward_times < num_microbatches: target_phase = Phase.FORWARD target_microbatch_id = self.forward_times else: target_phase = Phase.BACKWARD target_microbatch_id = self.backward_times target_key = UniqueKey(target_microbatch_id, target_phase) with self.work_list_condition_lock: self.work_list_condition_lock.wait_for(lambda: target_key in self.work_list) return target_key class FillDrainPipelineEngine(PipelineEngineBase): def __init__(self, partition_fn: Callable, stage_num: int, num_microbatches: int, device: str, chunk: int = 1, criterion: Callable = None, metric: Callable = None, checkpoint: bool = False, data_process_func: Callable = None) -> None: if chunk > 1: assert num_microbatches % stage_num == 0, \ "if you use interleaving strategy, make sure 'num_microbatches' is a multiple of stage_num!" use_1F1B = False super().__init__(FillDrainWorker, partition_fn, stage_num, num_microbatches, device, use_1F1B, chunk, criterion, metric, checkpoint, data_process_func) class OneFOneBWorker(WorkerBase): def _get_work_item_key(self) -> UniqueKey: # execute backward first (if backward phase in work_list) pp_rank = self.pp_rank actual_stage_num = self.actual_stage_num num_microbatches = self.num_microbatches is_last_stage = pp_rank == actual_stage_num - 1 if self.outstanding <= self.outstanding_range[0]: target_phase = Phase.FORWARD target_microbatch_id = self.forward_times elif self.outstanding >= self.outstanding_range[1]: target_phase = Phase.BACKWARD target_microbatch_id = self.backward_times else: raise ValueError("outstanding_range[1] - outstanding_range[0] must be in [0, 1]") target_key = UniqueKey(target_microbatch_id, target_phase) # change outstanding_range at: # 1. forward times reach actual_stage_num, this is the end of continuous forward # 2. forward times reach num_microbatches, this is the end of 1F1B mode if not is_last_stage and \ target_key.phase == Phase.FORWARD: if target_key.microbatch_id == actual_stage_num - 1 and num_microbatches > 2: # Why need num_microbatches > 2 ? Because there is no steady stage when num_microbatches <= 2 outstanding_min = actual_stage_num - pp_rank - 1 outstanding_max = actual_stage_num - pp_rank self.outstanding_range = (outstanding_min, outstanding_max) if target_key.microbatch_id == num_microbatches - 1: self.outstanding_range = (0, 0) return target_key class OneFOneBPipelineEngine(PipelineEngineBase): def __init__(self, partition_fn: Callable, stage_num: int, num_microbatches: int, device: str, chunk: int = 1, criterion: Callable = None, metric: Callable = None, checkpoint: bool = False, data_process_func: Callable = None) -> None: if chunk > 1: assert num_microbatches % stage_num == 0, \ "if you use interleaving strategy, make sure 'num_microbatches' is a multiple of stage_num!" # assert num_microbatches > stage_num * chunk, "num_microbatches must be greater than stage_num * chunk" use_1F1B = True super().__init__(OneFOneBWorker, partition_fn, stage_num, num_microbatches, device, use_1F1B, chunk, criterion, metric, checkpoint, data_process_func) class ChimeraWorker(WorkerBase): def _get_producer_consumer(self) -> None: rank = self.pp_rank min_pp_rank = (rank // self.actual_stage_num) * self.actual_stage_num max_pp_rank = min_pp_rank + self.actual_stage_num - 1 assert self.producer_stage_ids is None, f"all the producers of rank {rank} has been subscribed" assert self.consumer_stage_ids is None, f"all the consumers of rank {rank} has been subscribed" # should be aranged in order, the order of the input of current forward self.producer_stage_ids = [] self.consumer_stage_ids = [] # Just for demo prev_rank = rank - 1 next_rank = rank + 1 if prev_rank >= min_pp_rank: self.producer_stage_ids.append(prev_rank) if next_rank <= max_pp_rank: self.consumer_stage_ids.append(next_rank) def _get_work_item_key(self) -> UniqueKey: pp_rank = self.pp_rank stage_num = self.actual_stage_num real_microbatch_num = self.num_microbatches // 2 forward_block_size = 1 if self.num_microbatches < stage_num else self.num_microbatches // stage_num forward_block_num = self.forward_times // forward_block_size if self.forward_times >= real_microbatch_num or \ ((pp_rank + 1) % stage_num == 0 and forward_block_num > self.backward_times): target_phase = Phase.BACKWARD target_microbatch_id = self.backward_times else: # others target_phase = Phase.FORWARD target_microbatch_id = self.forward_times # In up pipeline, microbatch_id to consume is 0, 2, 4 (2n) # In down pipeline, microbatch_id to consume is 1, 3, 5 (2n + 1) real_target_microbatch_id = target_microbatch_id * 2 if pp_rank >= stage_num: real_target_microbatch_id += 1 target_key = UniqueKey(real_target_microbatch_id, target_phase) with self.work_list_condition_lock: self.work_list_condition_lock.wait_for(lambda: target_key in self.work_list) return target_key def _initialize_partition(self): # In order to ensure the down pipeline share the same parameter # with the up pipeline, partition of down partition will be copied # from corresponding up stage pp_rank = self.pp_rank stage_num = self.actual_stage_num device = self.device if pp_rank < stage_num: super()._initialize_partition() else: # if it is down pipeline, create partition by origin method co_up_pp_worker_rref = self.pp_rank_to_worker_rref[pp_rank - stage_num] # get the coresponding model state dict and wait for its init state_dict = co_up_pp_worker_rref.rpc_sync().get_partition_state_dict() super()._initialize_partition() self.module_partition.load_state_dict(state_dict) # init group for chimera in ppg ppg.get_chimera_all_reduce_group(pp_rank) # lock for step sync self.step_sync_lock = threading.Lock() self.step_sync_lock.acquire() self.have_grad_lock = threading.Lock() self.have_grad_lock.acquire() def _get_lock_gradient(self): self.have_grad_lock.acquire() grads = self.get_parameter_gradients() self.step_sync_lock.release() return grads def is_first_stage(self): return (self.pp_rank % self.actual_stage_num) == 0 def is_last_stage(self): return (self.pp_rank % self.actual_stage_num) == self.actual_stage_num - 1 def _is_last_step(self, work_item: WorkItem) -> bool: if work_item.forward_only: last_phase = Phase.FORWARD else: last_phase = Phase.BACKWARD is_last_phase = work_item.phase == last_phase last_microbatch_id = self.num_microbatches - 1 if self.pp_rank < self.actual_stage_num: last_microbatch_id -= 1 is_last_microbatch = work_item.microbatch_id == last_microbatch_id return is_last_phase and is_last_microbatch def _get_step_order(self) -> List[int]: # TODO : If you want to extend it to multi head chimera, overwrite here stage_num = self.actual_stage_num pp_rank = self.pp_rank # pp_rank in the same device local_device_pp_ranks = [pp_rank, stage_num * 2 - pp_rank - 1] local_device_pp_ranks.sort(reverse=min(local_device_pp_ranks) < stage_num // 2) return local_device_pp_ranks def _hook_before_step(self): self.have_grad_lock.release() pp_rank = self.pp_rank stage_num = self.actual_stage_num co_pp_rank = (pp_rank + stage_num) % (2 * stage_num) # if currrent pp_rank is not the first to do step # wait its previous pp_rank finish step grads = self.get_parameter_gradients() # send co_worker = self.pp_rank_to_worker_rref[co_pp_rank] co_grads = co_worker.rpc_sync()._get_lock_gradient() # sync self.step_sync_lock.acquire() for i in range(len(grads)): grads[i] += co_grads[i] class ChimeraPipelineEngine(PipelineEngineBase): def __init__(self, partition_fn: Callable, stage_num: int, num_microbatches: int, device: str, criterion: Callable = None, metric: Callable = None, checkpoint: bool = False, data_process_func: Callable = None) -> None: assert num_microbatches % stage_num == 0, \ "In Chimera, num_microbatches must be the multiply of stage_num!" use_1F1B = False chunk = 1 super().__init__(ChimeraWorker, partition_fn, stage_num, num_microbatches, device, use_1F1B, chunk, criterion, metric, checkpoint, data_process_func) def _consume_constraint(self, microbatch_id: int, forward_only: bool, input_pp_ranks: List[int], output_pp_ranks: List[int], ret_future): pass def _create_pp_rank_to_rpc_worker_id(self) -> None: stage_num = self.stage_num self.pp_rank_to_rpc_worker_id = [0] * (stage_num * 2) for pp_rank in range(stage_num): self.pp_rank_to_rpc_worker_id[pp_rank] = pp_rank self.pp_rank_to_rpc_worker_id[pp_rank + stage_num] = stage_num - pp_rank - 1 def _create_pp_rank_to_module_partition_id(self) -> None: stage_num = self.stage_num self.pp_rank_to_module_partition_id = [0] * (stage_num * 2) for pp_rank in range(stage_num): self.pp_rank_to_module_partition_id[pp_rank] = pp_rank self.pp_rank_to_module_partition_id[pp_rank + stage_num] = pp_rank def _create_ret_future(self, output_pp_ranks: List[int]) -> Dict[int, List[Future]]: num_microbatches = self.num_microbatches stage_num = self.stage_num up_ret_future = {pp_rank: [None] * num_microbatches for pp_rank in output_pp_ranks} down_ret_future = {pp_rank + stage_num: [None] * num_microbatches for pp_rank in output_pp_ranks} # merge up and down return {**up_ret_future, **down_ret_future} def _set_input(self, input_pp_ranks: List[int], microbatch_id: int, microbatch, forward_only: bool): # offset is 0 for all the ranks in up pipeline # offset is stage_num for all the ranks in down pipeline offset = (microbatch_id % 2) * self.stage_num for pp_rank in input_pp_ranks: worker_rref = self.pp_rank_to_worker_rref[pp_rank + offset] worker_rref.remote().set_input(microbatch_id, microbatch, forward_only) def _set_labels(self, output_pp_ranks: List[int], microbatch_id: int, microlabels): # offset is 0 for all the ranks in up pipeline # offset is stage_num for all the ranks in down pipeline offset = (microbatch_id % 2) * self.stage_num for pp_rank in output_pp_ranks: worker_rref = self.pp_rank_to_worker_rref[pp_rank + offset] worker_rref.remote().set_labels(microbatch_id, microlabels) def _subscribe_forward(self, microbatch_id: int, output_pp_ranks: List[int], ret_future: Dict[int, List[Future]]): key = UniqueKey(microbatch_id, Phase.FORWARD) offset = (microbatch_id % 2) * self.stage_num for pp_rank in output_pp_ranks: worker_rref = self.pp_rank_to_worker_rref[pp_rank + offset] ret_future[pp_rank + offset][microbatch_id] = worker_rref.rpc_async().get_output_by_key(key) def _ensure_backward(self, forward_only: bool, input_pp_ranks: List[int]): stage_num = self.stage_num num_microbatches = self.num_microbatches if not forward_only: for pp_rank in input_pp_ranks: up_last_microbatch_id = num_microbatches - 2 down_last_microbatch_id = num_microbatches - 1 up_worker_rref = self.pp_rank_to_worker_rref[pp_rank] down_worker_rref = self.pp_rank_to_worker_rref[pp_rank + stage_num] up_key = UniqueKey(up_last_microbatch_id, Phase.BACKWARD) down_key = UniqueKey(down_last_microbatch_id, Phase.BACKWARD) up_worker_rref.rpc_sync().get_output_by_key(up_key) down_worker_rref.rpc_sync().get_output_by_key(down_key) def _collect_forward_result(self, output_pp_ranks: List[int], ret_future: Dict[PyRRef, List[Future]]): """Logic of collection of forward in Chimera. Currently, only one input one output model is supported """ stage_num = self.stage_num forward_result = [] for pp_rank in output_pp_ranks: worker_forward_result = [None] * self.num_microbatches for microbatch_id in range(self.num_microbatches): offset = (microbatch_id % 2) * stage_num ret = ret_future[pp_rank + offset][microbatch_id].wait() ret = [ret] if isinstance(ret, torch.Tensor) else ret worker_forward_result[microbatch_id] = ret worker_forward_result = list(zip(*worker_forward_result)) forward_result.extend(worker_forward_result) return forward_result