import torch import pytest import colossalai import torch.nn.functional as F import torch.multiprocessing as mp from functools import partial from colossalai.tensor import ColoTensor, ProcessGroup, ColoTensorSpec from colossalai.utils import get_current_device from torch.nn import Parameter from colossalai.testing import rerun_if_address_is_in_use from colossalai.utils import free_port from colossalai.tensor import distspec def _run_layer_norm(): ln_op = torch.nn.LayerNorm(2, 3, device=get_current_device()) input_t = torch.randn(3, 2, device=get_current_device()) pg = ProcessGroup(tp_degree=torch.distributed.get_world_size()) input_t_colo = ColoTensor.from_torch_tensor(input_t.clone().detach(), ColoTensorSpec(pg)) # prepare colossalai LN weight = ColoTensor(Parameter(ln_op.weight.detach()), ColoTensorSpec(pg)) bias = ColoTensor(Parameter(ln_op.bias.detach()), ColoTensorSpec(pg)) output = ln_op(input_t) output_colo = F.layer_norm(input_t_colo, ln_op.normalized_shape, weight, bias, ln_op.eps) assert torch.allclose(output_colo, output) torch.mean(output).backward() torch.mean(output_colo).backward() assert torch.allclose(ln_op.weight.grad, weight.grad) def check_spec_eq(tensor, other): assert isinstance(tensor, ColoTensor) and isinstance(other, ColoTensor) for k in dir(tensor.dist_spec): if not k.startswith('__'): assert hasattr(other.dist_spec, k) assert getattr(tensor.dist_spec, k) == getattr(other.dist_spec, k) def check_element_wise_ops(): world_size = torch.distributed.get_world_size() pg = ProcessGroup(tp_degree=world_size) t = torch.rand(2, 2) x = ColoTensor(t, spec=ColoTensorSpec(pg, distspec.shard([0], [pg.tp_world_size()]))) check_spec_eq(x, x.cuda()) assert torch.equal(x.cuda(), t.cuda()) check_spec_eq(x, torch.abs(x)) assert torch.equal(torch.abs(x), torch.abs(t)) check_spec_eq(x, F.sigmoid(x)) assert torch.equal(F.sigmoid(x), F.sigmoid(t)) def run_dist(rank, world_size, port): colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') check_element_wise_ops() _run_layer_norm() @pytest.mark.dist @pytest.mark.parametrize('world_size', [2]) @rerun_if_address_is_in_use() def test_element_wise_ops(world_size): run_func = partial(run_dist, world_size=world_size, port=free_port()) mp.spawn(run_func, nprocs=world_size) def run_dist2(rank, world_size, port): colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') _run_layer_norm() @pytest.mark.dist @pytest.mark.parametrize('world_size', [1]) @rerun_if_address_is_in_use() def test_ln(world_size): run_func = partial(run_dist2, world_size=world_size, port=free_port()) mp.spawn(run_func, nprocs=world_size) def check_all(): test_element_wise_ops(2) if __name__ == '__main__': check_all()