import torch from colossalai.context.parallel_mode import ParallelMode from colossalai.tensor import ColoTensor from functools import partial import colossalai import pytest import torch import torch.multiprocessing as mp from colossalai.testing import parameterize, rerun_if_address_is_in_use from colossalai.utils.cuda import get_current_device from colossalai.utils import free_port from colossalai.core import global_context as gpc from colossalai.tensor import TensorSpec, ComputePattern, ParallelAction from _utils import check_equal, replace_parameter_add_grad, broadcast_tensor_chunk def run_linear_tp1d_col_test(): device = get_current_device() dtype = torch.float32 DEPTH = gpc.get_world_size(ParallelMode.PARALLEL_1D) in_features = 4 out_features = 8 local_rank = gpc.get_local_rank(ParallelMode.PARALLEL_1D) layer_master = torch.nn.Linear(in_features, out_features) layer = torch.nn.Linear(in_features, out_features) A_shape = (2, in_features) A_master = torch.randn(A_shape, dtype=dtype, device=device) A = broadcast_tensor_chunk(A_master, chunk_size=1) A.requires_grad = True W_shape = (out_features, in_features) W_master = torch.randn(W_shape, dtype=dtype, device=device) W = broadcast_tensor_chunk(W_master, chunk_size=1) W.requires_grad = True B_shape = (out_features) B_master = torch.randn(B_shape, dtype=dtype, device=device) B = broadcast_tensor_chunk(B_master, chunk_size=1) B.requires_grad = True # replace the torch nn.Parameters with ColoTensor sharded_weight = ColoTensor.init_from_torch_tensor(W) sharded_bias = ColoTensor.init_from_torch_tensor(B) parallel_action_list = [ ParallelAction(priority=1, compute_pattern=ComputePattern.TP1DCol, parallel_mode=ParallelMode.PARALLEL_1D) ] spec = TensorSpec(parallel_action_list) sharded_weight.set_spec(spec) # reshard sharded_bias.set_spec(spec) replace_parameter_add_grad(layer, sharded_weight, sharded_bias) out = layer(A) replace_parameter_add_grad(layer_master, W_master, B_master) A_master.requires_grad = True #C_master = torch.matmul(A_master, W_master.transpose(0, 1)) + B_master C_master = layer_master(A_master) C = C_master.clone() check_equal(out, C) grad_shape = C_master.shape grad_master = torch.randn(grad_shape, dtype=dtype, device=get_current_device()) grad = broadcast_tensor_chunk(grad_master, chunk_size=1) out.backward(grad) grad_master = grad_master.clone() C_master.backward(grad_master) W_grad = W_master.grad W_grad = torch.chunk(W_grad, DEPTH, dim=0)[local_rank] check_equal(W_grad, layer.weight.grad) B_grad = B_master.grad B_grad = torch.chunk(B_grad, DEPTH, dim=0)[local_rank] check_equal(B_grad, layer.bias.grad) def run_linear_tp1d_row_test(): device = get_current_device() dtype = torch.float32 DEPTH = gpc.get_world_size(ParallelMode.PARALLEL_1D) in_features = 4 out_features = 5 local_rank = gpc.get_local_rank(ParallelMode.PARALLEL_1D) layer_master = torch.nn.Linear(in_features, out_features) layer = torch.nn.Linear(in_features, out_features) A_shape = (2, in_features) A_master = torch.randn(A_shape, dtype=dtype, device=device) A = broadcast_tensor_chunk(A_master, chunk_size=1) A.requires_grad = True W_shape = (out_features, in_features) W_master = torch.randn(W_shape, dtype=dtype, device=device) W = broadcast_tensor_chunk(W_master, chunk_size=1) W.requires_grad = True B_shape = (out_features) B_master = torch.randn(B_shape, dtype=dtype, device=device) B = broadcast_tensor_chunk(B_master, chunk_size=1) B.requires_grad = True # replace the torch nn.Parameters with ColoTensor sharded_weight = ColoTensor.init_from_torch_tensor(W) parallel_action_list = [ ParallelAction(priority=1, compute_pattern=ComputePattern.TP1DRow, parallel_mode=ParallelMode.PARALLEL_1D) ] spec = TensorSpec(parallel_action_list) sharded_weight.set_spec(spec=spec) # reshard sharded_bias = ColoTensor.init_from_torch_tensor(B) replace_parameter_add_grad(layer, sharded_weight, sharded_bias) out = layer(A) replace_parameter_add_grad(layer_master, W_master, B_master) A_master.requires_grad = True #C_master = torch.matmul(A_master, W_master.transpose(0, 1)) + B_master C_master = layer_master(A_master) C = C_master.clone() check_equal(out, C) grad_shape = C_master.shape grad_master = torch.randn(grad_shape, dtype=dtype, device=get_current_device()) grad = broadcast_tensor_chunk(grad_master, chunk_size=1) out.backward(grad) grad_master = grad_master.clone() C_master.backward(grad_master) W_grad = W_master.grad W_grad = torch.chunk(W_grad, DEPTH, dim=-1)[local_rank] check_equal(W_grad, layer.weight.grad) B_grad = B_master.grad check_equal(B_grad, layer.bias.grad) def run_dist(rank, world_size, port): config = dict(parallel=dict(tensor=dict(mode="1d", size=world_size),)) colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') run_linear_tp1d_row_test() run_linear_tp1d_col_test() @pytest.mark.dist @parameterize('world_size', [1, 4]) @rerun_if_address_is_in_use() def test_linear_1d(world_size): run_func = partial(run_dist, world_size=world_size, port=free_port()) mp.spawn(run_func, nprocs=world_size) if __name__ == '__main__': test_linear_1d()