#!/usr/bin/env python # -*- encoding: utf-8 -*- import os from functools import partial from pathlib import Path import pytest import torch import torch.distributed as dist import torch.multiprocessing as mp from torchvision import transforms, datasets import colossalai from colossalai.context import ParallelMode, Config from colossalai.core import global_context as gpc from colossalai.utils import get_dataloader, free_port from colossalai.testing import rerun_if_address_is_in_use from torchvision import transforms CONFIG = Config( dict( train_data=dict( dataset=dict( type='CIFAR10', root=Path(os.environ['DATA']), train=True, download=True, ), dataloader=dict(num_workers=2, batch_size=2, shuffle=True), ), parallel=dict( pipeline=dict(size=1), tensor=dict(size=1, mode=None), ), seed=1024, )) def run_data_sampler(rank, world_size, port): dist_args = dict(config=CONFIG, rank=rank, world_size=world_size, backend='gloo', port=port, host='localhost') colossalai.launch(**dist_args) # build dataset transform_pipeline = [transforms.ToTensor(), transforms.RandomCrop(size=32, padding=4)] transform_pipeline = transforms.Compose(transform_pipeline) dataset = datasets.CIFAR10(root=Path(os.environ['DATA']), train=True, download=True, transform=transform_pipeline) # build dataloader dataloader = get_dataloader(dataset, batch_size=8, add_sampler=False) data_iter = iter(dataloader) img, label = data_iter.next() img = img[0] if gpc.get_local_rank(ParallelMode.DATA) != 0: img_to_compare = img.clone() else: img_to_compare = img dist.broadcast(img_to_compare, src=0, group=gpc.get_group(ParallelMode.DATA)) if gpc.get_local_rank(ParallelMode.DATA) != 0: # this is without sampler # this should be false if data parallel sampler to given to the dataloader assert torch.equal(img, img_to_compare), 'Same image was distributed across ranks and expected it to be the same' torch.cuda.empty_cache() @pytest.mark.cpu @rerun_if_address_is_in_use() def test_data_sampler(): world_size = 4 test_func = partial(run_data_sampler, world_size=world_size, port=free_port()) mp.spawn(test_func, nprocs=world_size) if __name__ == '__main__': test_data_sampler()