from typing import List, Union import torch import torch.nn as nn from torch.distributed import ProcessGroup from .parallel_module import ParallelModule from .utils import create_randomizer_with_offset __all__ = ['DropoutForParallelInput', 'DropoutForReplicatedInput'] class DropoutForParallelInput(ParallelModule, nn.Dropout): """ The Dropout Layer will apply dropout mask to the input tensor. The dropout mask is generated with randomness on different ranks of the given process group. This can avoid the same dropout mask is generated and applied on the same position of different ranks, leading to poor convergence performance. Args: p (float): probability of an element to be zeroed. Defaults to 0.5. inplace (bool): If set to True, will do this operation in-place. Defaults to False. process_group (ProcessGroup): the process group to be used for generating randomness. Defaults to None. """ def __init__(self, p: float = 0.5, inplace: bool = False, process_group: ProcessGroup = None): # init with nn.Dropout super(nn.Dropout, self).__init__(p=p, inplace=inplace) # offset the seed with randomizer index and rank seed = torch.random.initial_seed() self.randomizer = create_randomizer_with_offset(seed, process_group=process_group) @staticmethod def from_native_module(module: nn.Dropout, process_group: Union[ProcessGroup, List[ProcessGroup]] = None) -> "DropoutForParallelInput": """ Create a DropoutForParallelInput layer from a native dropout layer. """ p = module.p inplace = module.inplace return DropoutForParallelInput(p=p, inplace=inplace, process_group=process_group) def forward(self, input): with self.randomizer.fork_rng(): input = super().forward(input) return input class DropoutForReplicatedInput(ParallelModule, nn.Dropout): """ The Dropout Layer will apply dropout mask to the input tensor. The dropout mask is generated with randomness on different ranks of the given process group. This can avoid the same dropout mask is generated and applied on the same position of different ranks, leading to poor convergence performance. Args: p (float): probability of an element to be zeroed. Defaults to 0.5. inplace (bool): If set to True, will do this operation in-place. Defaults to False. process_group (ProcessGroup): the process group to be used for generating randomness. Defaults to None. """ def __init__(self, p: float = 0.5, inplace: bool = False, process_group: ProcessGroup = None): # init with nn.Dropout super(nn.Dropout, self).__init__(p=p, inplace=inplace) # offset the seed with randomizer index only seed = torch.random.initial_seed() self.randomizer = create_randomizer_with_offset(seed, process_group=process_group, offset_by_rank=False) @staticmethod def from_native_module( module: nn.Dropout, process_group: Union[ProcessGroup, List[ProcessGroup]] = None) -> "DropoutForReplicatedInput": """ Create a Dropout1D layer from a native dropout layer. """ p = module.p inplace = module.inplace return DropoutForReplicatedInput(p=p, inplace=inplace, process_group=process_group) def forward(self, input): with self.randomizer.fork_rng(): input = super().forward(input) return input