from typing import Callable, List, Tuple import torch from colossalai._analyzer._subclasses.flop_tensor import ewise_flop_counter as elementwise_flop_counter from colossalai._analyzer.fx.node_util import compute_size_in_bytes as activation_size from colossalai.auto_parallel.tensor_shard.sharding_strategy import MemoryCost, OperationDataType, TrainCycleItem from ..registry import meta_register __all__ = ["elementwise_meta_info"] def elementwise_meta_info(temp_mem_scale: float = 0, buffer_mem_scale: float = 0) -> Callable: """This is a function to create the meta information generator for elementwise operations Args: temp_mem_scale (float, optional): temp memory scaling factor for backward. Defaults to 0. buffer_mem_scale (float, optional): buffer memory scaling factor for forward. Defaults to 0. Returns: Callable: meta information generator """ def meta_func(*args, **kwargs) -> Tuple[TrainCycleItem, TrainCycleItem, List[torch.Tensor]]: input_tensor = next( filter( lambda x: (x.type == OperationDataType.ARG or x.type == OperationDataType.PARAM) and x.name != "softmax_dim", args, ) ).data output_tensor = next(filter(lambda x: x.type == OperationDataType.OUTPUT, args)).data is_inplace = 1 if kwargs.get("inplace", False) else 0 flop_counter = elementwise_flop_counter(1, 0) # calculate compute cost fwd_compute_cost = flop_counter([input_tensor], [output_tensor]) bwd_compute_cost = flop_counter([output_tensor], [input_tensor]) compute_cost = TrainCycleItem( fwd=fwd_compute_cost, bwd=bwd_compute_cost, total=fwd_compute_cost + bwd_compute_cost ) # calculate memory cost # NOTE: currently in SPMD solver we always believe that there will be a new tensor created in forward # NOTE: if in_place is True, we will not create a new tensor in forward fwd_memory_cost = MemoryCost( activation=activation_size(input_tensor) * (2 - is_inplace), parameter=0, temp=0, buffer=activation_size(input_tensor) * buffer_mem_scale, ) # temp_mem_scale is for situation like softmax backward # the buffer will be removed during backward phase bwd_memory_cost = MemoryCost( activation=activation_size(input_tensor) - activation_size(input_tensor) * buffer_mem_scale, parameter=0, temp=activation_size(input_tensor) * temp_mem_scale + activation_size(input_tensor) * buffer_mem_scale, buffer=0, ) # total cost is the sum of forward and backward cost total_cost = MemoryCost( activation=fwd_memory_cost.activation + bwd_memory_cost.activation, parameter=fwd_memory_cost.parameter + bwd_memory_cost.parameter, temp=fwd_memory_cost.temp + bwd_memory_cost.temp, buffer=fwd_memory_cost.buffer + bwd_memory_cost.buffer, ) memory_cost = TrainCycleItem(fwd=fwd_memory_cost, bwd=bwd_memory_cost, total=total_cost) # store fwd_in, fwd_buffer, fwd_out fwd_in = [] fwd_buffer = [torch.zeros_like(output_tensor, device="meta")] fwd_out = [torch.zeros_like(output_tensor, device="meta")] return compute_cost, memory_cost, fwd_in, fwd_buffer, fwd_out return meta_func # register meta information # (0, 0) meta_register.register([torch.nn.ReLU, torch.nn.functional.relu, torch.tanh])(elementwise_meta_info(0, 0)) # (1, 0) meta_register.register([torch.nn.Softmax, torch.nn.functional.softmax])(elementwise_meta_info(1, 0)) # (0, 0.25) for dropout, the buffer is in bool type so that the buffer memory cost is 0.25 times of input tensor meta_register.register([torch.nn.Dropout, torch.nn.functional.dropout])(elementwise_meta_info(0, 0.25))