# ColoDiffusion: Stable Diffusion with Colossal-AI *[Colosssal-AI](https://github.com/hpcaitech/ColossalAI) provides a faster and lower cost solution for pretraining and fine-tuning for AIGC (AI-Generated Content) applications such as the model [stable-diffusion](https://github.com/CompVis/stable-diffusion) from [Stability AI](https://stability.ai/).* We take advantage of [Colosssal-AI](https://github.com/hpcaitech/ColossalAI) to exploit multiple optimization strategies , e.g. data parallelism, tensor parallelism, mixed precision & ZeRO, to scale the training to multiple GPUs. ## Stable Diffusion [Stable Diffusion](https://huggingface.co/CompVis/stable-diffusion) is a latent text-to-image diffusion model. Thanks to a generous compute donation from [Stability AI](https://stability.ai/) and support from [LAION](https://laion.ai/), we were able to train a Latent Diffusion Model on 512x512 images from a subset of the [LAION-5B](https://laion.ai/blog/laion-5b/) database. Similar to Google's [Imagen](https://arxiv.org/abs/2205.11487), this model uses a frozen CLIP ViT-L/14 text encoder to condition the model on text prompts.

[Stable Diffusion with Colossal-AI](https://github.com/hpcaitech/ColossalAI/tree/main/examples/images/diffusion) provides **6.5x faster training and pretraining cost saving, the hardware cost of fine-tuning can be almost 7X cheaper** (from RTX3090/4090 24GB to RTX3050/2070 8GB).

## Requirements A suitable [conda](https://conda.io/) environment named `ldm` can be created and activated with: ``` conda env create -f environment.yaml conda activate ldm ``` You can also update an existing [latent diffusion](https://github.com/CompVis/latent-diffusion) environment by running ``` conda install pytorch==1.12.1 torchvision==0.13.1 torchaudio==0.12.1 cudatoolkit=11.3 -c pytorch pip install transformers==4.19.2 diffusers invisible-watermark pip install -e . ``` ### install lightning ``` git clone https://github.com/1SAA/lightning.git cd lightning git checkout strategy/colossalai export PACKAGE_NAME=pytorch pip install . ``` ### Install [Colossal-AI v0.1.10](https://colossalai.org/download/) From Our Official Website ``` pip install colossalai==0.1.12+torch1.12cu11.3 -f https://release.colossalai.org ``` > The specified version is due to the interface incompatibility caused by the latest update of [Lightning](https://github.com/Lightning-AI/lightning), which will be fixed in the near future. ## Download the model checkpoint from pretrained ### stable-diffusion-v1-4 Our default model config use the weight from [CompVis/stable-diffusion-v1-4](https://huggingface.co/CompVis/stable-diffusion-v1-4?text=A+mecha+robot+in+a+favela+in+expressionist+style) ``` git lfs install git clone https://huggingface.co/CompVis/stable-diffusion-v1-4 ``` ### stable-diffusion-v1-5 from runway If you want to useed the Last [stable-diffusion-v1-5](https://huggingface.co/runwayml/stable-diffusion-v1-5) wiegh from runwayml ``` git lfs install git clone https://huggingface.co/runwayml/stable-diffusion-v1-5 ``` ## Dataset The dataSet is from [LAION-5B](https://laion.ai/blog/laion-5b/), the subset of [LAION](https://laion.ai/), you should the change the `data.file_path` in the `config/train_colossalai.yaml` ## Training We provide the script `train_colossalai.sh` to run the training task with colossalai, and can also use `train_ddp.sh` to run the training task with ddp to compare. In `train_colossalai.sh` the main command is: ``` python main.py --logdir /tmp/ -t -b configs/train_colossalai.yaml ``` - you can change the `--logdir` to decide where to save the log information and the last checkpoint. ### Training config You can change the trainging config in the yaml file - accelerator: acceleratortype, default 'gpu' - devices: device number used for training, default 4 - max_epochs: max training epochs - precision: usefp16 for training or not, default 16, you must use fp16 if you want to apply colossalai ## Finetune Example ### Training on Teyvat Datasets We provide the finetuning example on [Teyvat](https://huggingface.co/datasets/Fazzie/Teyvat) dataset, which is create by BLIP generated captions. You can run by config `configs/Teyvat/train_colossalai_teyvat.yaml` ``` python main.py --logdir /tmp/ -t -b configs/Teyvat/train_colossalai_teyvat.yaml ``` ## Inference you can get yout training last.ckpt and train config.yaml in your `--logdir`, and run by ``` python scripts/txt2img.py --prompt "a photograph of an astronaut riding a horse" --plms --outdir ./output \ --config path/to/logdir/checkpoints/last.ckpt \ --ckpt /path/to/logdir/configs/project.yaml \ ``` ```commandline usage: txt2img.py [-h] [--prompt [PROMPT]] [--outdir [OUTDIR]] [--skip_grid] [--skip_save] [--ddim_steps DDIM_STEPS] [--plms] [--laion400m] [--fixed_code] [--ddim_eta DDIM_ETA] [--n_iter N_ITER] [--H H] [--W W] [--C C] [--f F] [--n_samples N_SAMPLES] [--n_rows N_ROWS] [--scale SCALE] [--from-file FROM_FILE] [--config CONFIG] [--ckpt CKPT] [--seed SEED] [--precision {full,autocast}] optional arguments: -h, --help show this help message and exit --prompt [PROMPT] the prompt to render --outdir [OUTDIR] dir to write results to --skip_grid do not save a grid, only individual samples. Helpful when evaluating lots of samples --skip_save do not save individual samples. For speed measurements. --ddim_steps DDIM_STEPS number of ddim sampling steps --plms use plms sampling --laion400m uses the LAION400M model --fixed_code if enabled, uses the same starting code across samples --ddim_eta DDIM_ETA ddim eta (eta=0.0 corresponds to deterministic sampling --n_iter N_ITER sample this often --H H image height, in pixel space --W W image width, in pixel space --C C latent channels --f F downsampling factor --n_samples N_SAMPLES how many samples to produce for each given prompt. A.k.a. batch size --n_rows N_ROWS rows in the grid (default: n_samples) --scale SCALE unconditional guidance scale: eps = eps(x, empty) + scale * (eps(x, cond) - eps(x, empty)) --from-file FROM_FILE if specified, load prompts from this file --config CONFIG path to config which constructs model --ckpt CKPT path to checkpoint of model --seed SEED the seed (for reproducible sampling) --use_int8 whether to use quantization method --precision {full,autocast} evaluate at this precision ``` ## Comments - Our codebase for the diffusion models builds heavily on [OpenAI's ADM codebase](https://github.com/openai/guided-diffusion) , [lucidrains](https://github.com/lucidrains/denoising-diffusion-pytorch), [Stable Diffusion](https://github.com/CompVis/stable-diffusion), [Lightning](https://github.com/Lightning-AI/lightning) and [Hugging Face](https://huggingface.co/CompVis/stable-diffusion). Thanks for open-sourcing! - The implementation of the transformer encoder is from [x-transformers](https://github.com/lucidrains/x-transformers) by [lucidrains](https://github.com/lucidrains?tab=repositories). - The implementation of [flash attention](https://github.com/HazyResearch/flash-attention) is from [HazyResearch](https://github.com/HazyResearch). ## BibTeX ``` @article{bian2021colossal, title={Colossal-AI: A Unified Deep Learning System For Large-Scale Parallel Training}, author={Bian, Zhengda and Liu, Hongxin and Wang, Boxiang and Huang, Haichen and Li, Yongbin and Wang, Chuanrui and Cui, Fan and You, Yang}, journal={arXiv preprint arXiv:2110.14883}, year={2021} } @misc{rombach2021highresolution, title={High-Resolution Image Synthesis with Latent Diffusion Models}, author={Robin Rombach and Andreas Blattmann and Dominik Lorenz and Patrick Esser and Björn Ommer}, year={2021}, eprint={2112.10752}, archivePrefix={arXiv}, primaryClass={cs.CV} } @article{dao2022flashattention, title={FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness}, author={Dao, Tri and Fu, Daniel Y. and Ermon, Stefano and Rudra, Atri and R{\'e}, Christopher}, journal={arXiv preprint arXiv:2205.14135}, year={2022} } ```