import math import pytest import torch from einops import rearrange from colossalai.kernel.cuda_native.mha.flash_attn_2 import HAS_FLASH_ATTN from colossalai.kernel.cuda_native.mha.mem_eff_attn import HAS_MEM_EFF_ATTN from colossalai.testing import clear_cache_before_run, parameterize if HAS_MEM_EFF_ATTN or HAS_FLASH_ATTN: from colossalai.kernel.cuda_native import ColoAttention from colossalai.kernel.cuda_native.scaled_softmax import AttnMaskType DTYPE = [torch.float16, torch.bfloat16, torch.float32] def attention_ref(q, k, v, attn_mask=None, causal=False): """ attention output of the control group """ dtype_og = q.dtype seqlen_q, seqlen_k = q.shape[1], k.shape[1] d = q.shape[-1] scale = 1.0 / math.sqrt(d) scores = torch.einsum('bthd,bshd->bhts', q * scale, k) if attn_mask is not None: scores.masked_fill_(rearrange(~attn_mask, 'b s -> b 1 1 s'), float('-inf')) if causal: causal_mask = torch.triu(torch.ones(seqlen_q, seqlen_k, dtype=torch.bool, device=q.device), 1) scores.masked_fill_(causal_mask, float('-inf')) attention = torch.softmax(scores, dim=-1) output = torch.einsum('bhts,bshd->bthd', attention, v) output = rearrange(output, "b s h d -> b s (h d)") # Modify the data at the positions of the mask to 0 if attn_mask is not None: output.masked_fill_(rearrange(~attn_mask, 'b s -> b s 1'), 0.0) return output.to(dtype=dtype_og) @pytest.mark.skipif(not HAS_MEM_EFF_ATTN and not HAS_FLASH_ATTN, reason="xformers is not available") @clear_cache_before_run() @parameterize('proj_shape', [(6, 8, 4, 16)]) @parameterize('dtype', DTYPE) @parameterize('dropout', [0.0]) def test_attention_gpt(proj_shape, dtype, dropout): (B, S, H, D_HEAD) = proj_shape D = H * D_HEAD q = torch.randn((B, S, H, D_HEAD), dtype=dtype, device="cuda", requires_grad=True) k = torch.randn((B, S, H, D_HEAD), dtype=dtype, device="cuda", requires_grad=True) v = torch.randn((B, S, H, D_HEAD), dtype=dtype, device="cuda", requires_grad=True) mask = [torch.ones(S - i, dtype=torch.bool, device="cuda") for i in range(B)] mask = torch.nn.utils.rnn.pad_sequence(mask, batch_first=True) attn = ColoAttention(D, H, dropout=dropout) y = attn(q, k, v, attn_mask=mask, attn_mask_type=AttnMaskType.paddedcausal) assert list(y.shape) == [B, S, D] out_ref = attention_ref(q, k, v, mask, causal=True) # check gradients dy = torch.rand_like(y) grad_q, grad_k, grad_v = torch.autograd.grad(y, (q, k, v), dy) grad_ref_q, grad_ref_k, grad_ref_v = torch.autograd.grad(out_ref, (q, k, v), dy) torch.allclose(y, out_ref, atol=1e-7), f"{(y - out_ref).abs().max()}" torch.allclose(grad_q, grad_ref_q, atol=1e-7), f"{(grad_q - grad_ref_q).abs().max()}" torch.allclose(grad_k, grad_ref_k, atol=1e-7), f"{(grad_k - grad_ref_k).abs().max()}" torch.allclose(grad_v, grad_ref_v, atol=1e-7), f"{(grad_v - grad_ref_v).abs().max()}" @pytest.mark.skipif(not HAS_MEM_EFF_ATTN and not HAS_FLASH_ATTN, reason="xformers is not available") @clear_cache_before_run() @parameterize('proj_shape', [(6, 8, 4, 16)]) @parameterize('dtype', DTYPE) @parameterize('dropout', [0.0]) def test_attention_bert(proj_shape, dtype, dropout): (B, S, H, D_HEAD) = proj_shape D = H * D_HEAD q = torch.randn((B, S, H, D_HEAD), dtype=dtype, device="cuda", requires_grad=True) k = torch.randn((B, S, H, D_HEAD), dtype=dtype, device="cuda", requires_grad=True) v = torch.randn((B, S, H, D_HEAD), dtype=dtype, device="cuda", requires_grad=True) # attention mask of shape [B, S] with zero padding to max length S mask = torch.randint(0, 2, (B, S), dtype=torch.bool, device="cuda") attn = ColoAttention(D, H, dropout=dropout) y = attn(q, k, v, attn_mask=mask, attn_mask_type=AttnMaskType.padding) assert list(y.shape) == [B, S, D] out_ref = attention_ref(q, k, v, mask, causal=False) dy = torch.rand_like(y) grad_q, grad_k, grad_v = torch.autograd.grad(y, (q, k, v), dy) grad_ref_q, grad_ref_k, grad_ref_v = torch.autograd.grad(out_ref, (q, k, v), dy) torch.allclose(y, out_ref, atol=1e-7), f"{(y - out_ref).abs().max()}" torch.allclose(grad_q, grad_ref_q, atol=1e-7), f"{(grad_q - grad_ref_q).abs().max()}" torch.allclose(grad_k, grad_ref_k, atol=1e-7), f"{(grad_k - grad_ref_k).abs().max()}" torch.allclose(grad_v, grad_ref_v, atol=1e-7), f"{(grad_v - grad_ref_v).abs().max()}" @pytest.mark.skipif(not HAS_MEM_EFF_ATTN and not HAS_FLASH_ATTN, reason="xformers is not available") @clear_cache_before_run() @parameterize('proj_shape', [(6, 8, 4, 16)]) @parameterize('dtype', DTYPE) @parameterize('dropout', [0.0]) def test_attention_no_mask(proj_shape, dtype, dropout): (B, S, H, D_HEAD) = proj_shape D = H * D_HEAD q = torch.randn((B, S, H, D_HEAD), dtype=dtype, device="cuda", requires_grad=True) k = torch.randn((B, S, H, D_HEAD), dtype=dtype, device="cuda", requires_grad=True) v = torch.randn((B, S, H, D_HEAD), dtype=dtype, device="cuda", requires_grad=True) attn = ColoAttention(D, H, dropout=dropout) y = attn(q, k, v) assert list(y.shape) == [B, S, D] out_ref = attention_ref(q, k, v, None, causal=False) dy = torch.rand_like(y) grad_q, grad_k, grad_v = torch.autograd.grad(y, (q, k, v), dy) grad_ref_q, grad_ref_k, grad_ref_v = torch.autograd.grad(out_ref, (q, k, v), dy) torch.allclose(y, out_ref, atol=1e-7), f"{(y - out_ref).abs().max()}" torch.allclose(grad_q, grad_ref_q, atol=1e-7), f"{(grad_q - grad_ref_q).abs().max()}" torch.allclose(grad_k, grad_ref_k, atol=1e-7), f"{(grad_k - grad_ref_k).abs().max()}" torch.allclose(grad_v, grad_ref_v, atol=1e-7), f"{(grad_v - grad_ref_v).abs().max()}" @pytest.mark.skipif(not HAS_MEM_EFF_ATTN and not HAS_FLASH_ATTN, reason="xformers is not available") @clear_cache_before_run() @parameterize('proj_shape', [(6, 24, 8, 4, 16)]) @parameterize('dtype', DTYPE) @parameterize('dropout', [0.0]) def test_cross_attention(proj_shape, dtype, dropout): (B, S, T, H, D_HEAD) = proj_shape D = H * D_HEAD q = torch.randn((B, T, H, D_HEAD), dtype=dtype, device="cuda", requires_grad=True) k = torch.randn((B, S, H, D_HEAD), dtype=dtype, device="cuda", requires_grad=True) v = torch.randn((B, S, H, D_HEAD), dtype=dtype, device="cuda", requires_grad=True) attn = ColoAttention(D, H, dropout=dropout) y = attn(q, k, v, attn_mask_type=AttnMaskType.causal) assert list(y.shape) == [B, T, D] out_ref = attention_ref(q, k, v, None, causal=True) dy = torch.rand_like(y) grad_q, grad_k, grad_v = torch.autograd.grad(y, (q, k, v), dy) grad_ref_q, grad_ref_k, grad_ref_v = torch.autograd.grad(out_ref, (q, k, v), dy) torch.allclose(y, out_ref, atol=1e-18), f"{(y - out_ref).abs().max()}" torch.allclose(grad_q, grad_ref_q, atol=1e-7), f"{(grad_q - grad_ref_q).abs().max()}" torch.allclose(grad_k, grad_ref_k, atol=1e-7), f"{(grad_k - grad_ref_k).abs().max()}" torch.allclose(grad_v, grad_ref_v, atol=1e-7), f"{(grad_v - grad_ref_v).abs().max()}"