import pytest import torch from torch.nn.parallel import DistributedDataParallel as DDP import colossalai from colossalai.logging import disable_existing_loggers from colossalai.shardformer.layer.utils import Randomizer from colossalai.tensor.d_tensor.api import clear_layout_converter from colossalai.testing import clear_cache_before_run, parameterize, rerun_if_address_is_in_use, spawn from tests.kit.model_zoo import model_zoo from tests.test_shardformer.test_model._utils import ( build_model_from_hybrid_plugin, check_all_grad_tensors, check_loss, check_output_hidden_state, check_weight, get_grad_tensors_for_check, run_forward_backward_with_hybrid_plugin, unwrap_model, ) def check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn, test_config): org_model, org_optimizer, sharded_model, sharded_optimizer, criterion, booster = \ build_model_from_hybrid_plugin(model_fn, loss_fn, test_config) org_loss, org_output, sharded_loss, sharded_output = \ run_forward_backward_with_hybrid_plugin( org_model, sharded_model, sharded_optimizer, data_gen_fn, output_transform_fn, criterion, booster) stage_manager = booster.plugin.stage_manager tp_group = booster.plugin.tp_group # unwrap model t5 = unwrap_model(org_model) sharded_t5 = unwrap_model(sharded_model) row_layer_for_check = ['shared', 'encoder.block[0].layer[0].SelfAttention.q'] # Save gradient tensors for comparison between the original model and the sharded model before optimizer step. grads_to_check = {} if test_config['precision'] == 'fp32': atol, rtol = 1e-5, 1e-3 else: atol, rtol = 5e-3, 5e-3 if (stage_manager is None or stage_manager.is_first_stage()) and booster.plugin.zero_stage == 0: row_layer_grads = get_grad_tensors_for_check(t5, sharded_t5, row_layer_for_check, tp_group, atol=atol, rtol=rtol, dim=0) grads_to_check.update(row_layer_grads) # optimizer executes step org_optimizer.step() sharded_optimizer.step() # check last hidden state & loss if stage_manager is None or stage_manager.is_last_stage(): if test_config['precision'] == 'fp32': atol, rtol = 1e-5, 1e-3 else: atol, rtol = 5e-3, 5e-3 if org_model.__class__.__name__ != 'T5ForConditionalGeneration': check_output_hidden_state(org_output, sharded_output, stage_manager, atol=atol, rtol=rtol) check_loss(org_loss, sharded_loss, atol=atol, rtol=rtol) # check weights if test_config['precision'] == 'fp32': atol, rtol = 5e-4, 1e-3 else: atol, rtol = 5e-3, 5e-3 if stage_manager is None or stage_manager.is_first_stage(): check_weight(t5, sharded_t5, row_layer_for_check, tp_group, atol=atol, rtol=rtol, dim=0, verbose=False) # check grads check_all_grad_tensors(grads_to_check) torch.cuda.empty_cache() @parameterize('test_config', [{ 'tp_size': 2, 'pp_size': 2, 'num_microbatches': 2, 'enable_all_optimization': True, 'use_lazy_init': True, 'precision': 'fp16', 'initial_scale': 1, }, { 'tp_size': 1, 'pp_size': 2, 'num_microbatches': 4, 'use_lazy_init': False, 'precision': 'fp16', 'initial_scale': 1, }, { 'tp_size': 4, 'pp_size': 1, 'enable_all_optimization': True, 'use_lazy_init': False, 'precision': 'fp32', }, { 'tp_size': 1, 'pp_size': 4, 'num_microbatches': 4, 'enable_all_optimization': False, 'use_lazy_init': False, 'precision': 'fp32' }, { 'tp_size': 2, 'pp_size': 1, 'enable_all_optimization': True, 'use_lazy_init': False, 'precision': 'fp32' }, { 'tp_size': 2, 'pp_size': 1, 'enable_all_optimization': True, 'use_lazy_init': True, 'zero_stage': 2, 'precision': 'fp16', 'initial_scale': 1 }, { 'tp_size': 1, 'pp_size': 2, 'num_microbatches': 2, 'enable_all_optimization': True, 'use_lazy_init': True, 'zero_stage': 1, 'precision': 'fp16', 'initial_scale': 1 }]) @clear_cache_before_run() def run_t5_test(test_config): sub_model_zoo = model_zoo.get_sub_registry('transformers_t5') for name, (model_fn, data_gen_fn, output_transform_fn, loss_fn, _) in sub_model_zoo.items(): # skip 4-stage pp test for t5_encoder if test_config['pp_size'] > 2 and name == 'transformers_t5_encoder_model': continue check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn, test_config) clear_layout_converter() Randomizer.reset_index() torch.cuda.empty_cache() @parameterize('test_config', [ { 'tp_size': 2, 'pp_size': 2, 'num_microbatches': 4, 'enable_all_optimization': False, 'use_lazy_init': False, 'precision': 'fp32', 'initial_scale': 1, }, { 'tp_size': 2, 'pp_size': 2, 'num_microbatches': 4, 'enable_all_optimization': False, 'use_lazy_init': False, 'precision': 'fp16', 'zero_stage': 1, 'initial_scale': 1, }, ]) def run_t5_3d_test(test_config): sub_model_zoo = model_zoo.get_sub_registry('transformers_t5') for name, (model_fn, data_gen_fn, output_transform_fn, loss_fn, _) in sub_model_zoo.items(): check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn, test_config) clear_layout_converter() torch.cuda.empty_cache() def check_t5(rank, world_size, port): disable_existing_loggers() colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') run_t5_test() def check_t5_3d(rank, world_size, port): disable_existing_loggers() colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') run_t5_3d_test() @pytest.mark.dist @rerun_if_address_is_in_use() @clear_cache_before_run() def test_t5(): spawn(check_t5, 4) @pytest.mark.largedist @rerun_if_address_is_in_use() @clear_cache_before_run() def test_t5_3d(): spawn(check_t5_3d, 8) if __name__ == "__main__": test_t5() test_t5_3d()