import pytest import torch from packaging import version from colossalai.kernel.triton import layer_norm from colossalai.testing.utils import parameterize try: import triton import triton.language as tl from colossalai.kernel.triton.fused_layernorm import _layer_norm_fwd_fused HAS_TRITON = True except ImportError: HAS_TRITON = False print("please install triton from https://github.com/openai/triton") TRITON_CUDA_SUPPORT = version.parse(torch.version.cuda) > version.parse('11.4') @pytest.mark.skipif(not TRITON_CUDA_SUPPORT or not HAS_TRITON, reason="triton requires cuda version to be higher than 11.4") @parameterize('M', [2, 4, 8, 16]) @parameterize('N', [64, 128]) def test_layer_norm(M, N): dtype = torch.float16 eps = 1e-5 x_shape = (M, N) w_shape = (x_shape[-1],) weight = torch.rand(w_shape, dtype=dtype, device='cuda') bias = torch.rand(w_shape, dtype=dtype, device='cuda') x = -2.3 + 0.5 * torch.randn(x_shape, dtype=dtype, device='cuda') y_triton = layer_norm(x, weight, bias, eps) y_torch = torch.nn.functional.layer_norm(x, w_shape, weight, bias, eps).to(dtype) assert y_triton.shape == y_torch.shape assert y_triton.dtype == y_torch.dtype print("max delta: ", torch.max(torch.abs(y_triton - y_torch))) assert torch.allclose(y_triton, y_torch, atol=1e-2, rtol=0) if __name__ == "__main__": test_layer_norm()