import os import pytest import torch from packaging import version import colossalai from colossalai.inference.tensor_parallel import TPInferEngine from colossalai.logging import disable_existing_loggers from colossalai.shardformer import ShardConfig from colossalai.testing import clear_cache_before_run, parameterize, rerun_if_address_is_in_use, spawn from tests.kit.model_zoo import model_zoo TP_SIZE = 2 MAX_BATCH_SIZE = 4 MAX_INPUT_LEN = 16 MAX_OUTPUT_LEN = 32 CUDA_SUPPORT = version.parse(torch.version.cuda) > version.parse('11.5') @parameterize('test_config', [{ 'tp_size': TP_SIZE, }]) def run(test_config): sub_model_zoo = model_zoo.get_sub_registry('transformers_bloom_for_causal_lm') for name, (model_fn, data_gen_fn, _, _, _) in sub_model_zoo.items(): orig_model = model_fn() orig_model = orig_model.half() data = data_gen_fn() shard_config = ShardConfig(enable_tensor_parallelism=True if test_config['tp_size'] > 1 else False, inference_only=True) infer_engine = TPInferEngine(orig_model, shard_config, MAX_BATCH_SIZE, MAX_INPUT_LEN, MAX_OUTPUT_LEN) generate_kwargs = dict(do_sample=False) outputs = infer_engine.generate(data, **generate_kwargs) assert outputs is not None def check_bloom(rank, world_size, port): disable_existing_loggers() colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') run() @pytest.mark.skipif(not CUDA_SUPPORT, reason="kv-cache manager engine requires cuda version to be higher than 11.5") @pytest.mark.dist @rerun_if_address_is_in_use() @clear_cache_before_run() def test_bloom_infer(): spawn(check_bloom, TP_SIZE) if __name__ == '__main__': test_bloom_infer()