import torch import transformers from ..registry import ModelAttribute, model_zoo # =============================== # Register single-sentence OPT # =============================== BATCH_SIZE = 2 SEQ_LENGTH = 16 def data_gen(): input_ids = torch.Tensor([[1, 15043, 29892, 590, 11203, 338, 274, 1082]]).long() attention_mask = torch.Tensor([[1, 1, 1, 1, 1, 1, 1, 1]]).long() return dict(input_ids=input_ids, attention_mask=attention_mask) def data_gen_for_causal_lm(): # LM data gen # the `labels` of LM is the token of the output, cause no padding, use `input_ids` as `labels` data = data_gen() labels = data['input_ids'].clone() data['labels'] = labels return data def data_gen_for_sequence_classification(): # LM data gen # the `labels` of LM is the token of the output, cause no padding, use `input_ids` as `labels` data = data_gen() labels = data['input_ids'].clone() data['labels'] = torch.tensor([1]) return data def data_gen_for_question_answering(): # LM data gen # the `labels` of LM is the token of the output, cause no padding, use `input_ids` as `labels` data = data_gen() data['start_positions'] = torch.tensor([0]) data['end_positions'] = torch.tensor([1]) return data output_transform_fn = lambda x: x loss_fn_for_opt_model = lambda x: torch.nn.functional.mse_loss(x.last_hidden_state, torch.ones_like(x.last_hidden_state) ) loss_fn_for_lm = lambda x: x.loss config = transformers.OPTConfig( hidden_size=128, num_hidden_layers=2, num_attention_heads=4, dropout=0, ) # register the following models # transformers.OPTModel, # transformers.OPTForCausalLM, model_zoo.register(name='transformers_opt', model_fn=lambda: transformers.OPTModel(config), data_gen_fn=data_gen, output_transform_fn=output_transform_fn, loss_fn=loss_fn_for_opt_model, model_attribute=ModelAttribute(has_control_flow=True)) model_zoo.register(name='transformers_opt_for_causal_lm', model_fn=lambda: transformers.OPTForCausalLM(config), data_gen_fn=data_gen_for_causal_lm, output_transform_fn=output_transform_fn, loss_fn=loss_fn_for_lm, model_attribute=ModelAttribute(has_control_flow=True)) model_zoo.register(name='transformers_opt_for_question_answering', model_fn=lambda: transformers.OPTForQuestionAnswering(config), data_gen_fn=data_gen_for_question_answering, output_transform_fn=output_transform_fn, loss_fn=loss_fn_for_lm, model_attribute=ModelAttribute(has_control_flow=True)) # TODO The loss and gradient check in the test are failing, to be fixed. # model_zoo.register(name='transformers_opt_for_sequence_classification', # model_fn=lambda: transformers.OPTForSequenceClassification(config), # data_gen_fn=data_gen_for_sequence_classification, # output_transform_fn=output_transform_fn, # loss_fn=loss_fn_for_lm, # model_attribute=ModelAttribute(has_control_flow=True))