import time import torch import tqdm import transformers from args import parse_benchmark_args from transformers import AutoConfig, OPTForCausalLM from transformers.utils.versions import require_version import colossalai from colossalai.booster import Booster from colossalai.booster.plugin import GeminiPlugin, LowLevelZeroPlugin, TorchDDPPlugin from colossalai.cluster import DistCoordinator from colossalai.logging import disable_existing_loggers, get_dist_logger from colossalai.nn.optimizer import HybridAdam require_version("transformers>=4.20.0", "To fix: pip install -r requirements.txt") def format_num(num: int, bytes=False): """Scale bytes to its proper format, e.g. 1253656 => '1.20MB'""" factor = 1024 if bytes else 1000 suffix = "B" if bytes else "" for unit in ["", " K", " M", " G", " T", " P"]: if num < factor: return f"{num:.2f}{unit}{suffix}" num /= factor def get_data(batch_size, seq_len, vocab_size): input_ids = torch.randint(0, vocab_size, (batch_size, seq_len), device=torch.cuda.current_device()) attention_mask = torch.ones_like(input_ids) return input_ids, attention_mask def colo_memory_cap(size_in_GB): from colossalai.utils import colo_device_memory_capacity, colo_set_process_memory_fraction, get_current_device cuda_capacity = colo_device_memory_capacity(get_current_device()) if size_in_GB * (1024**3) < cuda_capacity: colo_set_process_memory_fraction(size_in_GB * (1024**3) / cuda_capacity) print(f"Limiting GPU memory usage to {size_in_GB} GB") def main(): args = parse_benchmark_args() # Launch ColossalAI colossalai.launch_from_torch(config={}, seed=args.seed) coordinator = DistCoordinator() world_size = coordinator.world_size # Manage loggers disable_existing_loggers() logger = get_dist_logger() if coordinator.is_master(): transformers.utils.logging.set_verbosity_info() else: transformers.utils.logging.set_verbosity_error() # Whether to set limit of memory capacity if args.mem_cap > 0: colo_memory_cap(args.mem_cap) # Build OPT model config = AutoConfig.from_pretrained(args.model_name_or_path) model = OPTForCausalLM(config=config) logger.info(f"Finish loading model from {args.model_name_or_path}", ranks=[0]) # Enable gradient checkpointing model.gradient_checkpointing_enable() # Set plugin booster_kwargs = {} if args.plugin == 'torch_ddp_fp16': booster_kwargs['mixed_precision'] = 'fp16' if args.plugin.startswith('torch_ddp'): plugin = TorchDDPPlugin() elif args.plugin == 'gemini': plugin = GeminiPlugin(offload_optim_frac=1.0, pin_memory=True, initial_scale=2**5) elif args.plugin == 'low_level_zero': plugin = LowLevelZeroPlugin(initial_scale=2**5) logger.info(f"Set plugin as {args.plugin}", ranks=[0]) # Set optimizer optimizer = HybridAdam(model.parameters(), lr=args.learning_rate) # Set booster booster = Booster(plugin=plugin, **booster_kwargs) model, optimizer, _, _, _ = booster.boost(model, optimizer) SEQ_LEN = 1024 VOCAB_SIZE = 50257 # Start training. logger.info(f"Start testing", ranks=[0]) progress_bar = tqdm.tqdm(total=args.max_train_steps, desc="Training Step", disable=not coordinator.is_master()) torch.cuda.synchronize() model.train() start_time = time.time() for _ in range(args.max_train_steps): input_ids, attn_mask = get_data(args.batch_size, SEQ_LEN, VOCAB_SIZE) optimizer.zero_grad() outputs = model(input_ids=input_ids, attention_mask=attn_mask, labels=input_ids, use_cache=False) loss = outputs['loss'] booster.backward(loss, optimizer) optimizer.step() torch.cuda.synchronize() progress_bar.update(1) # Compute Statistics end_time = time.time() throughput = "{:.4f}".format((world_size * args.max_train_steps * args.batch_size) / (end_time - start_time)) max_mem = format_num(torch.cuda.max_memory_allocated(device=torch.cuda.current_device()), bytes=True) logger.info( f"Testing finished, " f"batch size per gpu: {args.batch_size}, " f"plugin: {args.plugin}, " f"throughput: {throughput}, " f"maximum memory usage per gpu: {max_mem}.", ranks=[0]) if __name__ == "__main__": main()