from types import MethodType from typing import Optional, Tuple import torch import torch.nn as nn from transformers.models.llama.modeling_llama import LlamaAttention, apply_rotary_pos_emb, repeat_kv SUPPORT_XFORMERS = False SUPPORT_FLASH2 = False try: import xformers.ops as xops SUPPORT_XFORMERS = True except ImportError: pass try: from flash_attn import flash_attn_func SUPPORT_FLASH2 = True except ImportError: pass SUPPORT_FLASH = SUPPORT_XFORMERS or SUPPORT_FLASH2 def llama_flash_attention( self: LlamaAttention, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, output_attentions: bool = False, use_cache: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: bsz, q_len, _ = hidden_states.size() query_states = self.q_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) key_states = self.k_proj(hidden_states).view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) value_states = self.v_proj(hidden_states).view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) kv_seq_len = key_states.shape[-2] if past_key_value is not None: kv_seq_len += past_key_value[0].shape[-2] cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) # [bsz, nh, t, hd] if past_key_value is not None: # reuse k, v, self_attention key_states = torch.cat([past_key_value[0], key_states], dim=2) value_states = torch.cat([past_key_value[1], value_states], dim=2) past_key_value = (key_states, value_states) if use_cache else None # repeat k/v heads if n_kv_heads < n_heads key_states = repeat_kv(key_states, self.num_key_value_groups) value_states = repeat_kv(value_states, self.num_key_value_groups) # q, k, v is [B, H, S, K] and xformers need [B, S, H, K]. returns [B, S, H, K] query_states = query_states.transpose(1, 2) key_states = key_states.transpose(1, 2) value_states = value_states.transpose(1, 2) if SUPPORT_FLASH2: attn_output = flash_attn_func(query_states, key_states, value_states, causal=True) else: attn_output = xops.memory_efficient_attention(query_states, key_states, value_states, attn_bias=xops.LowerTriangularMask()) attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) attn_output = self.o_proj(attn_output) if not output_attentions: attn_weights = None return attn_output, attn_weights, past_key_value def replace_xformers(model: nn.Module): for module in model.modules(): if isinstance(module, LlamaAttention): module.forward = MethodType(llama_flash_attention, module)