from typing import Optional import torch from .configuration_chatglm import ChatGLMConfig from .modeling_chatglm import ChatGLMForConditionalGeneration from ..base import Actor class ChatGLMActor(Actor): """ ChatGLM Actor model. Args: pretrained (str): Pretrained model name or path. config (ChatGLMConfig): Model config. checkpoint (bool): Enable gradient checkpointing. do not support lora for now. """ def __init__(self, pretrained: str = None, config: Optional[ChatGLMConfig] = None, checkpoint: bool = False) -> None: if pretrained is not None: model = ChatGLMForConditionalGeneration.from_pretrained(pretrained) elif config is not None: model = ChatGLMForConditionalGeneration(config) else: model = ChatGLMForConditionalGeneration(ChatGLMConfig()) if checkpoint: model.gradient_checkpointing_enable() super().__init__(model, lora_rank=0, lora_train_bias='none')