import random from typing import List import torch from coati.experience_maker.base import Experience from .base import ExperienceBuffer from .utils import BufferItem, make_experience_batch, split_experience_batch class NaiveExperienceBuffer(ExperienceBuffer): """Naive experience buffer class. It stores experience. Args: sample_batch_size (int): Batch size when sampling. limit (int, optional): Limit of number of experience samples. A number <= 0 means unlimited. Defaults to 0. cpu_offload (bool, optional): Whether to offload experience to cpu when sampling. Defaults to True. """ def __init__(self, sample_batch_size: int, limit: int = 0, cpu_offload: bool = True) -> None: super().__init__(sample_batch_size, limit) self.cpu_offload = cpu_offload self.target_device = torch.device(f'cuda:{torch.cuda.current_device()}') # TODO(ver217): add prefetch self.items: List[BufferItem] = [] @torch.no_grad() def append(self, experience: Experience) -> None: if self.cpu_offload: experience.to_device(torch.device('cpu')) items = split_experience_batch(experience) self.items.extend(items) if self.limit > 0: samples_to_remove = len(self.items) - self.limit if samples_to_remove > 0: self.items = self.items[samples_to_remove:] def clear(self) -> None: self.items.clear() @torch.no_grad() def sample(self) -> Experience: items = random.sample(self.items, self.sample_batch_size) experience = make_experience_batch(items) if self.cpu_offload: experience.to_device(self.target_device) return experience def __len__(self) -> int: return len(self.items) def __getitem__(self, idx: int) -> BufferItem: return self.items[idx] def collate_fn(self, batch) -> Experience: experience = make_experience_batch(batch) return experience