from typing import Optional, Union import torch import torch.nn.functional as F def _compute_approx_kl(log_probs: torch.Tensor, log_probs_base: torch.Tensor, action_mask: Optional[torch.Tensor] = None) -> torch.Tensor: """ Compute the approximate KL divergence between two distributions. Schulman blog: http://joschu.net/blog/kl-approx.html Args: log_probs: Log probabilities of the new distribution. log_probs_base: Log probabilities of the base distribution. action_mask: Mask for actions. """ log_ratio = log_probs_base - log_probs approx_kl = (log_ratio.exp() - 1) - log_ratio if action_mask is not None: approx_kl = masked_mean(approx_kl, action_mask, dim=1) return approx_kl approx_kl = approx_kl.mean(dim=1) return approx_kl def compute_reward(r: Union[torch.Tensor, float], kl_coef: float, log_probs: torch.Tensor, log_probs_base: torch.Tensor, action_mask: Optional[torch.Tensor] = None) -> torch.Tensor: if kl_coef <= 0.0: return r kl = _compute_approx_kl(log_probs, log_probs_base, action_mask=action_mask) reward = r - kl_coef * kl return reward def _log_probs_from_logits(logits: torch.Tensor, labels: torch.Tensor) -> torch.Tensor: log_probs = F.log_softmax(logits, dim=-1) log_probs_labels = log_probs.gather(dim=-1, index=labels.unsqueeze(-1)) return log_probs_labels.squeeze(-1) def calc_action_log_probs(output: torch.Tensor, sequences: torch.LongTensor, num_actions: int) -> torch.Tensor: """Calculate action log probs. Args: output (torch.Tensor): Output tensor of Actor.forward. sequences (torch.LongTensor): Input sequences. num_actions (int): Number of actions. Returns: torch.Tensor: Action log probs. """ logits = output['logits'] log_probs = _log_probs_from_logits(logits[:, :-1, :], sequences[:, 1:]) return log_probs[:, -num_actions:] def masked_mean(tensor: torch.Tensor, mask: torch.Tensor, dim: int = 1) -> torch.Tensor: tensor = tensor * mask tensor = tensor.sum(dim=dim) mask_sum = mask.sum(dim=dim) mean = tensor / (mask_sum + 1e-8) return mean