import copy import os import pytest import torch from transformers import T5Config, T5EncoderModel, T5ForConditionalGeneration, T5Model, T5Tokenizer, T5TokenizerFast import colossalai from colossalai.logging import disable_existing_loggers from colossalai.shardformer.shard import ShardConfig, ShardFormer from colossalai.testing import assert_hf_output_close, clear_cache_before_run, rerun_if_address_is_in_use, spawn os.environ['TRANSFORMERS_NO_ADVISORY_WARNINGS'] = 'true' CONFIG = dict(parallel=dict(data=1, pipeline=1, tensor=dict(size=2, mode='1d')),) tokenizer = T5Tokenizer.from_pretrained("t5-small") def build_model(world_size, model_fn): config = T5Config(decoder_start_token_id=0) config.dropout_rate = 0 org_model = model_fn(config=config).to('cuda') shard_config = ShardConfig(tensor_parallel_size=world_size) # shard model shard_config = ShardConfig(tensor_parallel_size=world_size) model_copy = copy.deepcopy(org_model) shard_former = ShardFormer(shard_config=shard_config) shard_former.init_distributed() sharded_model = shard_former.shard_model(model_copy) return org_model, sharded_model def check_forward_backward(org_model, sharded_model): # prepare input input_ids = tokenizer("translate English to German: The house is wonderful.", return_tensors="pt").input_ids.to('cuda') labels = tokenizer("Das Haus ist wunderbar.", return_tensors="pt").input_ids.to('cuda') # switch to train mode org_model.train() sharded_model.train() if isinstance(org_model, T5ForConditionalGeneration): org_output = org_model(input_ids=input_ids, labels=labels) org_loss = org_output.loss shard_output = sharded_model(input_ids=input_ids, labels=labels) shard_loss = shard_output.loss elif isinstance(org_model, T5Model): decoder_input_ids = org_model._shift_right(input_ids) org_output = org_model(input_ids=input_ids, decoder_input_ids=decoder_input_ids) org_loss = org_output.last_hidden_state.mean() shard_output = sharded_model(input_ids=input_ids, decoder_input_ids=decoder_input_ids) shard_loss = shard_output.last_hidden_state.mean() elif isinstance(org_model, T5EncoderModel): org_output = org_model(input_ids=input_ids) org_loss = org_output.last_hidden_state.mean() shard_output = sharded_model(input_ids=input_ids) shard_loss = shard_output.last_hidden_state.mean() # key is sharded, so we ignore assert_hf_output_close(org_output, shard_output, ignore_keys=['past_key_values']) # do backward org_loss.backward() shard_loss.backward() # check grad equality org_grad = org_model.encoder.block[0].layer[0].SelfAttention.q.weight.grad shard_grad = sharded_model.encoder.block[0].layer[0].SelfAttention.q.weight.grad shard_grad_list = [torch.zeros([*shard_grad.shape]).to('cuda') for _ in range(2)] shard_grad = torch.distributed.all_gather(shard_grad_list, shard_grad) all_shard_grad = torch.cat(shard_grad_list, dim=0) assert torch.allclose(org_loss, shard_loss, atol=1e-5), f"shard model loss is not equal to orgin model loss\n{org_loss}\n{shard_loss}" assert torch.allclose(org_grad, all_shard_grad, atol=1e-5), f"shard model grad is not equal to orgin model grad\n{org_grad}\n{shard_grad}" def check_t5(rank, world_size, port): disable_existing_loggers() colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') model_fn_list = [ T5Model, T5ForConditionalGeneration, T5EncoderModel, ] for model_fn in model_fn_list: org_model, sharded_model = build_model(world_size, model_fn) check_forward_backward(org_model, sharded_model) torch.cuda.empty_cache() @pytest.mark.dist @rerun_if_address_is_in_use() @clear_cache_before_run() def test_t5(): spawn(check_t5, 2) if __name__ == "__main__": test_t5()