import copy import os import pytest import torch from transformers import ( AutoTokenizer, BertConfig, BertForMaskedLM, BertForNextSentencePrediction, BertForPreTraining, BertForSequenceClassification, BertLMHeadModel, BertModel, ) import colossalai from colossalai.logging import disable_existing_loggers from colossalai.shardformer import ShardConfig, ShardFormer from colossalai.testing import rerun_if_address_is_in_use, spawn os.environ['TRANSFORMERS_NO_ADVISORY_WARNINGS'] = 'true' CONFIG = dict(parallel=dict(data=1, pipeline=1, tensor=dict(size=2, mode='1d')),) tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") def build_model(world_size, model_fn): config = BertConfig() config.hidden_dropout_prob = 0 config.attention_probs_dropout_prob = 0 org_model = model_fn(config=config) org_model_forshard = copy.deepcopy(org_model) org_model.to('cuda') # TODO: no need to transfer to cuda org_model_forshard.to('cuda') shard_config = ShardConfig(tensor_parallel_size=world_size,) shard_former = ShardFormer(shard_config=shard_config) shard_former.init_distributed() sharded_model = shard_former.shard_model(org_model_forshard).to('cuda') return org_model, sharded_model def check_forward(org_model, sharded_model): input = 'Hello, my dog is cute' tokenized_input = tokenizer(input, return_tensors='pt').to('cuda') #orgin model org_model.eval() org_out = org_model(**tokenized_input) #shard model sharded_model.eval() shard_out = sharded_model(**tokenized_input) assert torch.allclose( org_out[0], shard_out[0], atol=1e-5), f"shard model output is not equal to orgin model output\n{org_out[0]}\n{shard_out[0]}" def check_backward(org_model, sharded_model): # prepare input input = 'Hello, my dog is cute' tokenized_input = tokenizer(input, return_tensors='pt').to('cuda') labels = tokenized_input['input_ids'].clone() labels[labels == tokenizer.pad_token_id] = -100 tokenized_input['labels'] = labels #orgin model org_model.train() org_out = org_model(**tokenized_input) org_loss = org_out.loss org_loss.backward() org_grad = org_model.bert.encoder.layer[0].attention.self.query.weight.grad #shard model sharded_model.train() shard_out = sharded_model(**tokenized_input) shard_loss = shard_out.loss shard_loss.backward() shard_grad = sharded_model.bert.encoder.layer[0].attention.self.query.weight.grad shard_grad_list = [torch.zeros([*shard_grad.shape]).to('cuda') for _ in range(2)] shard_grad = torch.distributed.all_gather(shard_grad_list, shard_grad) all_shard_grad = torch.cat(shard_grad_list, dim=0) assert torch.allclose(org_loss, shard_loss, atol=1e-5), f"shard model loss is not equal to orgin model loss\n{org_loss}\n{shard_loss}" assert torch.allclose(org_grad, all_shard_grad, atol=1e-5), f"shard model grad is not equal to orgin model grad\n{org_grad}\n{shard_grad}" def check_bert(rank, world_size, port): disable_existing_loggers() colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') forward_list = [ BertForMaskedLM, BertForPreTraining, BertLMHeadModel, # TODO: do not work yet # BertModel, # BertForSequenceClassification # BertForNextSentencePrediction, ] backward_lsit = [BertForMaskedLM, BertLMHeadModel] for model_fn in forward_list: org_model, sharded_model = build_model(model_fn) check_forward(org_model, sharded_model) if model_fn in backward_lsit: check_backward(org_model, sharded_model) torch.cuda.empty_cache() @pytest.mark.dist @rerun_if_address_is_in_use() def test_bert(): spawn(check_bert, 2) if __name__ == "__main__": test_bert()