import threading from enum import Enum from typing import List, Any, Tuple, Dict from abc import ABC, abstractmethod import torch from torch import nn import torch.distributed.rpc as rpc from torch.futures import Future from torch._C._distributed_rpc import PyRRef from torch import autograd from tqdm import tqdm from colorama import Back, Style # config for debug and test use_color_debug = False use_progress = False # TODO: # 1. design a unique_key without node.name (Maybe I can use combination of microbatch_id and stage_id) # 2. use waiting list to contain the uncomplete WorkItem # 3. think about the representation of the order of args and kwargs def color_debug(text, prefix=' ', color='blue'): if use_color_debug: color = color.upper() print(getattr(Back, color), prefix, Style.RESET_ALL, text) def tensor_shape_list(tensors): if isinstance(tensors, torch.Tensor): return tensors.shape shapes = [] for t in tensors: if hasattr(t, 'shape'): shapes.append(t.shape) else: shapes.append('non tensor') return shapes class Phase(Enum): FORWARD = 0 BACKWARD = 1 ACCUM_GRAD = 2 SYNC = 3 class UniqueKey: __slots__ = ('microbatch_id', 'phase') microbatch_id: int phase: Phase def __init__(self, microbatch_id, phase) -> None: self.microbatch_id = microbatch_id self.phase = phase def __eq__(self, __o: object) -> bool: return (self.microbatch_id == __o.microbatch_id) and (self.phase == __o.phase) def __hash__(self) -> int: return tuple.__hash__((self.microbatch_id, self.phase)) def __repr__(self) -> str: return f'Key(microbatch_id={self.microbatch_id}, phase={self.phase})' class WorkItem: __slots__ = ('stage_id', 'phase', 'args', 'kwargs', 'output', 'refcount', 'microbatch_id', 'batch_id', 'num_microbatches') stage_id: int phase: Phase args: Tuple[Any] kwargs: Dict[str, Any] output: Future microbatch_id: int refcount: int batch_id: int num_microbatches: int def __init__(self, stage_id, phase, args, kwargs, output, microbatch_id, batch_id, num_microbatches, refcount=0) -> None: for attr_name in self.__slots__: setattr(self, attr_name, locals()[attr_name]) class BackwardCache: __slots__ = ('checkpoint', 'stage_inputs', 'stage_outputs') checkpoint: bool stage_inputs: Tuple[Any] stage_outputs: Tuple[Any] def __init__(self, stage_inputs: List[torch.Tensor], stage_outputs: List[torch.Tensor] = None, checkpoint: bool = False) -> None: for arg_name in self.__slots__: setattr(self, arg_name, locals()[arg_name]) class RemoteExecutor: def __init__(self) -> None: pass class RemoteOptimizer: def __init__(self) -> None: pass class Worker: def __init__(self, cur_rank_module: nn.Module, rank: int, world_size: int, num_microbatches: int, max_outstanding: int, device: str, checkpoint: bool = False) -> None: super().__init__() self.rank = rank self.world_size = world_size self.num_microbatches = num_microbatches self.max_outstanding = max_outstanding self.outstanding = 0 self.checkpoint = checkpoint if device == 'cuda': device = f'cuda:{rank}' self.device = device self.future_devices = None if device is None or device == 'cpu' else [device] self.stage_to_worker_rref: Dict[int, PyRRef] = None self.producer_stage_ids: List[int] = None self.consumer_stage_ids: List[int] = None # module self.cur_rank_module = cur_rank_module.to(device) self.microbatch_id_to_backward_cache: Dict[int, BackwardCache] = dict() self.work_list: Dict[UniqueKey, WorkItem] = dict() self.output_list: Dict[UniqueKey, WorkItem] = dict() # Why must a Lock instead of RLock ? # Because RLock cannot be pickled self.work_list_condition_lock = threading.Condition(threading.Lock()) self.output_list_condition_lock = threading.Condition(threading.Lock()) self.main_loop_thread = threading.Thread(target=self._work_loop, name=f'rank_{rank}', daemon=True) self.main_loop_thread.start() def _get_future_by_device(self): return torch.futures.Future(devices=None if self.device in (None, 'cpu') else [self.device]) def sync_global_worker_rrefs(self, stage_to_worker_rref: Dict[int, PyRRef]) -> None: assert self.stage_to_worker_rref is None, f"in rank {self.rank}, worker has sync global workers rrefs" assert stage_to_worker_rref is not None, "stage_to_workers must be a dict instead of None" self.stage_to_worker_rref = stage_to_worker_rref def get_output_by_key(self, key: UniqueKey) -> Any: with self.output_list_condition_lock: while key not in self.output_list: self.output_list_condition_lock.wait() output_work_item = self.output_list[key] output = output_work_item.output.wait() # color_debug(f'rank {self.rank}, output {type(output)}', 'get output', 'red') output_work_item.refcount += 1 # all consumers have been satisfied, the work_item can be released with self.output_list_condition_lock: if output_work_item.refcount == len(self.consumer_stage_ids): self.output_list.pop(key) return output # just for first rank # TODO : input is args kwargs def set_input(self, microbatch_id: int, microbatch: Tuple[Any]): with self.work_list_condition_lock: assert self.consumer_stage_ids is not None consumer_num = len(self.consumer_stage_ids) key = UniqueKey(microbatch_id, Phase.FORWARD) output = self._get_future_by_device() args = [microbatch] if isinstance(microbatch, torch.Tensor) else microbatch work_item = WorkItem(self.rank, Phase.FORWARD, args, {}, output, microbatch_id, None, self.num_microbatches, consumer_num) self.work_list[key] = work_item color_debug(f'rank {self.rank} receive data from dataloader', 'data dispatch', 'magenta') self.work_list_condition_lock.notify_all() # just for last rank # TODO : write a function to add gradient to work_list and see if there is contradictory def _begin_backward(self, microbatch_id: int): with self.work_list_condition_lock: assert self.producer_stage_ids is not None producer_num = len(self.producer_stage_ids) key = UniqueKey(microbatch_id, Phase.BACKWARD) output = self._get_future_by_device() grad_wrt_loss = torch.tensor(1, device=self.device) work_item = WorkItem(self.rank, Phase.BACKWARD, grad_wrt_loss, {}, output, microbatch_id, None, self.num_microbatches, producer_num) color_debug(f'rank {self.rank} propose backward', 'data dispatch', 'magenta') self.work_list[key] = work_item self.work_list_condition_lock.notify_all() def subscribe_producer(self, microbatch_id: int): """ You should call this function asynchronously """ assert self.producer_stage_ids is not None producer_num = len(self.producer_stage_ids) consumer_num = len(self.consumer_stage_ids) assert producer_num > 0, "only stage that has producers can subscribe producers" stage_id = self.rank subscribe_forward_futures: List[Future] = [None] * producer_num output = self._get_future_by_device() for i in range(producer_num): producer_stage_id = self.producer_stage_ids[i] producer_output_key = UniqueKey(microbatch_id, Phase.FORWARD) producer_worker_rref = self.stage_to_worker_rref[producer_stage_id] subscribe_forward_futures[i] = producer_worker_rref.rpc_async().get_output_by_key(producer_output_key) color_debug(f'rank {self.rank} get {len(subscribe_forward_futures)} futs from its producer', 'data dispatch', 'magenta') args = [] for i in range(producer_num): producer_args = subscribe_forward_futures[i].wait() args.extend(producer_args) # TODO : not only args work_item_from_producer = WorkItem(stage_id, Phase.FORWARD, args, {}, output, microbatch_id, None, self.num_microbatches, consumer_num) color_debug(f'rank {self.rank} get value {tensor_shape_list(args)} from fut', 'data dispatch', 'magenta') # add work_item to work_list with self.work_list_condition_lock: key = UniqueKey(microbatch_id, Phase.FORWARD) assert key not in self.work_list self.work_list[key] = work_item_from_producer color_debug( f'rank_{self.rank} load a new task to its work_list {key} {work_item_from_producer.phase} data: {tensor_shape_list(work_item_from_producer.args)}', 'data dispatch', 'magenta') self.work_list_condition_lock.notify_all() def subscribe_consumer(self, microbatch_id: int): """ You should call this function asynchronously """ assert self.producer_stage_ids is not None producer_num = len(self.producer_stage_ids) consumer_num = len(self.consumer_stage_ids) assert consumer_num > 0, "only stage that has consumers can subscribe comsumers" # TODO : is this right? stage_id = self.rank subscribe_backward_futures: List[Future] = [None] * consumer_num output = self._get_future_by_device() color_debug(f'rank {self.rank} get {len(subscribe_backward_futures)} futs from its consumer', 'data dispatch', 'magenta') for i in range(consumer_num): consumer_stage_id = self.consumer_stage_ids[i] consumer_output_key = UniqueKey(microbatch_id, Phase.BACKWARD) consumer_worker_rref = self.stage_to_worker_rref[consumer_stage_id] subscribe_backward_futures[i] = consumer_worker_rref.rpc_async().get_output_by_key(consumer_output_key) args = [] for i in range(consumer_num): consumer_args = subscribe_backward_futures[i].wait() args.extend(consumer_args) # flatten args work_item_from_consumer = WorkItem(stage_id, Phase.BACKWARD, args, {}, output, microbatch_id, None, self.num_microbatches, producer_num) color_debug(f'rank {self.rank} get value {tensor_shape_list(args)} from fut', 'data dispatch', 'magenta') # add work_item to work_list with self.work_list_condition_lock: key = UniqueKey(microbatch_id, Phase.BACKWARD) assert key not in self.work_list self.work_list[key] = work_item_from_consumer color_debug( f'rank_{self.rank} load a new task to its work_list {key} {work_item_from_consumer.phase} data: {tensor_shape_list(work_item_from_consumer.args)}', 'data dispatch', 'magenta') self.work_list_condition_lock.notify_all() # TODO : fit in any type of partition of network def _get_producer_consumer(self) -> None: rank = self.rank assert self.producer_stage_ids is None, f"all the producers of rank {rank} has been subscribed" assert self.consumer_stage_ids is None, f"all the consumers of rank {rank} has been subscribed" # should be aranged in order, the order of the input of current forward self.producer_stage_ids = [] self.consumer_stage_ids = [] # Just for demo prev_rank = rank - 1 next_rank = rank + 1 if prev_rank >= 0: self.producer_stage_ids.append(prev_rank) if next_rank <= self.world_size - 1: self.consumer_stage_ids.append(next_rank) def _skip_forward(self, work_item_phase: Phase) -> bool: if work_item_phase == Phase.FORWARD and \ self.max_outstanding is not None and \ self.outstanding >= self.max_outstanding: return True return False def _get_work_item_key(self) -> UniqueKey: with self.work_list_condition_lock: while len(self.work_list) == 0: self.work_list_condition_lock.wait() # execute backward first (if backward phase in work_list) select_work_list_key = None for key in self.work_list: work_item = self.work_list[key] if work_item.phase == Phase.BACKWARD: return key if self._skip_forward(work_item.phase): continue else: select_work_list_key = key return select_work_list_key def _consume_work_item_by_phase(self, work_item: WorkItem): phase = work_item.phase args = work_item.args kwargs = work_item.kwargs microbatch_id = work_item.microbatch_id consume_result = None # color_debug(f'rank_{self.rank} enter consume', 'consume', 'blue') if phase == Phase.FORWARD: self.outstanding += 1 # TODO : more elegant ? for i in range(len(args)): arg_obj = args[i] if isinstance(arg_obj, torch.Tensor) and not arg_obj.requires_grad: args[i] = arg_obj.requires_grad_() # TODO : use process manager to acquire rank info later is_last_stage = len(self.consumer_stage_ids) == 0 if self.checkpoint and not is_last_stage: with torch.no_grad(): consume_result = self.cur_rank_module(*args, **kwargs) stage_outputs = None stage_inputs = args self.microbatch_id_to_backward_cache[microbatch_id] = BackwardCache(stage_inputs, stage_outputs, checkpoint=True) else: # TODO : replace with *args, **kwargs and ensure the consume_result is a tuple consume_result = self.cur_rank_module(*args, **kwargs) stage_outputs = consume_result stage_inputs = args self.microbatch_id_to_backward_cache[microbatch_id] = BackwardCache(stage_inputs, stage_outputs, checkpoint=False) consume_result = [consume_result] if isinstance(consume_result, torch.Tensor) else consume_result # if it is the last stage, trigger backward automatic if is_last_stage: self._begin_backward(microbatch_id) elif phase == Phase.BACKWARD: self.outstanding -= 1 assert microbatch_id in self.microbatch_id_to_backward_cache, f"microbatch_id {microbatch_id} not in backward cache" backward_cache = self.microbatch_id_to_backward_cache.pop(microbatch_id) stage_outputs = backward_cache.stage_outputs stage_inputs = backward_cache.stage_inputs grad_tensors = args # color_debug(f'rank_{self.rank} before backward', 'consume', 'yellow') if self.checkpoint: stage_outputs = [self.cur_rank_module(*stage_inputs)] autograd.backward(stage_outputs, grad_tensors=grad_tensors) # color_debug(f'rank_{self.rank} after backward', 'consume', 'yellow') # collect grad of input tensor consume_result = [] for input_node in stage_inputs: if isinstance(input_node, torch.Tensor): consume_result.append(input_node.grad) elif phase == Phase.SYNC: pass else: raise TypeError(f"Unknown phase appears in _consume_work_item_by_phase {phase}") return consume_result # do the main loop to consume ready_list def _work_loop(self): # for init self._get_producer_consumer() # main loop while True: work_item_key = self._get_work_item_key() if work_item_key is None: continue # move current work item to output_list to activate subscribe in advance with self.work_list_condition_lock: work_item = self.work_list.pop(work_item_key) color_debug( f'rank {self.rank} get a key : {work_item_key} work_item args: {tensor_shape_list(work_item.args)}', 'work loop', 'green') with self.output_list_condition_lock: # assert work_item_key not in self.output_list self.output_list[work_item_key] = work_item self.output_list_condition_lock.notify_all() consume_result = self._consume_work_item_by_phase(work_item) color_debug( f'rank_{self.rank} [{work_item.phase}] finish consuming, result is {tensor_shape_list(consume_result)}', 'work loop', 'green') # if work_item.stage_id == 1 and work_item.phase == Phase.BACKWARD: # from time import sleep # sleep(5) work_item.output.set_result(consume_result) # TODO # 1. chunk # 2. checkpoint class PipelineEngineBase(ABC, nn.Module): def __init__(self, module_partitions, chunk, world_size, num_microbatches, device: str, max_outstanding=None, use_interleave: bool = False, checkpoint: bool = False) -> None: super().__init__() self.module_partitions: List[nn.Module] = module_partitions self.chunk = chunk self.num_microbatches = num_microbatches self.device = device self.max_outstanding = max_outstanding self.world_size = world_size self.checkpoint = checkpoint self.use_interleave = use_interleave self.stage_to_worker_rref: Dict[int, PyRRef] = dict() self._init_worker() def _init_worker(self): world_size = self.world_size max_outstanding = self.max_outstanding checkpoint = self.checkpoint num_microbatches = self.num_microbatches device = self.device # TODO : world size is correct ? for rank in range(world_size): cur_rank_module = self.module_partitions[rank] self.stage_to_worker_rref[rank] = rpc.remote(rank, Worker, args=(cur_rank_module, rank, world_size, num_microbatches, max_outstanding, device, checkpoint)) # let each worker know global worker rref (include itself) for rank in range(world_size): self.stage_to_worker_rref[rank].rpc_sync().sync_global_worker_rrefs(self.stage_to_worker_rref) @abstractmethod def forward_backward(self): pass class FillDrainPipelineEngine(PipelineEngineBase): def __init__(self, module_partitions, chunk, world_size, num_microbatches, device: str, max_outstanding=None, use_interleave: bool = False, checkpoint: bool = False) -> None: super().__init__(module_partitions, chunk, world_size, num_microbatches, device, max_outstanding, use_interleave, checkpoint) # TODO : adjust to args and kwargs def forward_backward(self, batch: torch.Tensor): first_stage_worker = self.stage_to_worker_rref[0] microbatch_size = len(batch) // self.num_microbatches microbatch_iter = range(self.num_microbatches) if use_progress: microbatch_iter = tqdm(microbatch_iter) for microbatch_id in microbatch_iter: microbatch = batch[microbatch_size * microbatch_id:microbatch_size * (microbatch_id + 1)] # forward subscribe asynchronously for rank in range(1, self.world_size, 1): worker_rref = self.stage_to_worker_rref[rank] worker_rref.rpc_async().subscribe_producer(microbatch_id) # backward subscribe asynchronously for rank in range(self.world_size - 2, -1, -1): worker_rref = self.stage_to_worker_rref[rank] worker_rref.rpc_async().subscribe_consumer(microbatch_id) # run one microbatch first_stage_worker.rpc_sync().set_input(microbatch_id, microbatch) class OneFOneBPipelineEngine(FillDrainPipelineEngine): def __init__(self, module_partitions, chunk, world_size, num_microbatches, device: str, max_outstanding=None, use_interleave: bool = False, checkpoint: bool = False) -> None: if max_outstanding is None: max_outstanding = world_size super().__init__(module_partitions, chunk, world_size, num_microbatches, device, max_outstanding, use_interleave, checkpoint)