import contextlib import os import torch import torch.nn as nn from titans.model.gpt import GPTLMLoss import colossalai import colossalai.utils as utils from colossalai.context.parallel_mode import ParallelMode from colossalai.core import global_context as gpc from colossalai.logging import disable_existing_loggers, get_dist_logger from colossalai.nn import LinearWarmupLR from colossalai.trainer import Trainer, hooks from colossalai.utils import colo_set_process_memory_fraction, is_using_pp from colossalai.utils.timer import MultiTimer from colossalai.zero.init_ctx import ZeroInitContext def calc_local_model_size(model: torch.nn.Module): numel_per_device = 0 for p in model.parameters(): numel_per_device += p.numel() return numel_per_device VOCAB_SIZE = 50257 def main(): parser = colossalai.get_default_parser() parser.add_argument('--from_torch', default=False, action='store_true') parser.add_argument('--use_dummy_dataset', default=True, action='store_true') args = parser.parse_args() disable_existing_loggers() if args.from_torch: colossalai.launch_from_torch(config=args.config) else: colossalai.launch_from_slurm(config=args.config, host=args.host, port=29500, seed=42) logger = get_dist_logger() if not args.use_dummy_dataset: data_path = os.environ['DATA'] logger.info(f'Build data loader from path {data_path}', ranks=[0]) from dataset.webtext import WebtextDataset train_ds = WebtextDataset(os.environ['DATA'], seq_len=gpc.config.SEQ_LEN) train_dataloader = utils.get_dataloader(train_ds, seed=42, batch_size=gpc.config.BATCH_SIZE, pin_memory=True, shuffle=True, drop_last=True) else: # build a dummy train_dataloader logger.info('Build data loader using dummy data', ranks=[0]) def get_data(batch_size, seq_len, vocab_size): input_ids = torch.randint(0, vocab_size, (batch_size, seq_len), device=torch.cuda.current_device()) attention_mask = torch.ones_like(input_ids) return input_ids, attention_mask # 10 iterations input_ids, attn_mask = get_data(gpc.config.BATCH_SIZE * 10, gpc.config.SEQ_LEN, VOCAB_SIZE) from torch.utils.data import DataLoader, Dataset class TextSamplerDataset(Dataset): def __init__(self, data, seq_len): super().__init__() self.data = data self.seq_len = seq_len def __getitem__(self, index): rand_start = torch.randint(0, self.data.size(0) - self.seq_len, (1,)) full_seq = self.data[rand_start:rand_start + self.seq_len + 1].long() return full_seq.cuda() def __len__(self): return self.data.size(0) // self.seq_len def cycle(loader): while True: for data in loader: yield data train_dataset = TextSamplerDataset(input_ids, gpc.config.SEQ_LEN) train_dataloader = DataLoader(train_dataset, batch_size=gpc.config.BATCH_SIZE) logger.info('Build model', ranks=[0]) use_pipeline = is_using_pp() use_interleaved = hasattr(gpc.config.model, 'num_chunks') use_zero3 = hasattr(gpc.config, 'zero') ctx = contextlib.nullcontext() if use_zero3: ctx = ZeroInitContext(target_device=torch.cuda.current_device(), shard_strategy=gpc.config.zero.model_config.shard_strategy, shard_param=True) with ctx: model = gpc.config.model.pop('type')(**gpc.config.model) if use_pipeline and use_interleaved and not isinstance(model, nn.ModuleList): model = nn.ModuleList([model]) if use_zero3: numel = ctx.model_numel_tensor.item() else: numel = calc_local_model_size(model) tflop = numel * gpc.config.BATCH_SIZE * gpc.config.SEQ_LEN \ * gpc.get_world_size(ParallelMode.MODEL) * gpc.get_world_size(ParallelMode.DATA) * 8 / (1024 ** 4) criterion = getattr(gpc.config, 'loss_fn', None) if criterion is not None: criterion = criterion.type() else: criterion = GPTLMLoss() logger.info('Build optimizer', ranks=[0]) optimizer = gpc.config.optimizer.pop('type')(model.parameters(), **gpc.config.optimizer) lr_scheduler = LinearWarmupLR(optimizer, total_steps=gpc.config.NUM_EPOCHS, warmup_steps=5) engine, train_dataloader, _, lr_scheduler = colossalai.initialize(model, optimizer, criterion, train_dataloader=train_dataloader, lr_scheduler=lr_scheduler) global_batch_size = gpc.config.BATCH_SIZE * \ gpc.get_world_size(ParallelMode.DATA) * getattr(gpc.config, "gradient_accumulation", 1) logger.info(f'Init done, global batch size = {global_batch_size}', ranks=[0]) timier = MultiTimer() trainer = Trainer(engine=engine, logger=logger, timer=timier) hook_list = [ hooks.LossHook(), hooks.LRSchedulerHook(lr_scheduler=lr_scheduler, by_epoch=True), hooks.LogMetricByEpochHook(logger), hooks.ThroughputHook(ignored_steps=10, tflop_per_step=tflop), hooks.LogMetricByStepHook(), hooks.LogMemoryByEpochHook(logger), # hooks.LogMemoryByEpochHook(logger), # hooks.LogTimingByEpochHook(timer, logger), ] trainer.fit(train_dataloader=train_dataloader, epochs=gpc.config.NUM_EPOCHS, test_interval=1, hooks=hook_list, display_progress=True, return_output_label=False) if __name__ == '__main__': main()