#!/usr/bin/env python # -*- encoding: utf-8 -*- import torch from torch.utils.checkpoint import check_backward_validity, detach_variable from colossalai.context.random import get_states, get_current_mode, set_seed_states, set_mode, sync_states from .cuda import get_current_device def copy_to_device(obj, device): if torch.is_tensor(obj): # Notice: # When in no_grad context, requires_gard is False after movement ret = obj.to(device) ret.requires_grad = obj.requires_grad return ret elif isinstance(obj, list): return [copy_to_device(i, device) for i in obj] elif isinstance(obj, tuple): return tuple([copy_to_device(v, device) for v in obj]) elif isinstance(obj, dict): return {k: copy_to_device(v, device) for k, v in obj.items()} else: return obj class CheckpointFunction(torch.autograd.Function): @staticmethod def forward(ctx, run_function, activation_offload=False, *args): check_backward_validity(args) ctx.run_function = run_function ctx.activation_offload = activation_offload ctx.device = get_current_device() # preserve rng states ctx.fwd_cpu_rng_state = torch.get_rng_state() sync_states() ctx.fwd_seed_states = get_states(copy=True) ctx.fwd_current_mode = get_current_mode() if hasattr(torch, 'is_autocast_enabled'): ctx.had_autocast_in_fwd = torch.is_autocast_enabled() else: ctx.had_autocast_in_fwd = False if activation_offload: inputs_cuda = copy_to_device(args, ctx.device) else: inputs_cuda = args with torch.no_grad(): outputs = run_function(*inputs_cuda) # Save non-tensor inputs in ctx, keep a placeholder None for tensors # to be filled out during the backward. ctx.inputs = [] ctx.tensor_indices = [] tensor_inputs = [] for i, arg in enumerate(args): if torch.is_tensor(arg): if activation_offload: tensor_inputs.append(copy_to_device(arg, 'cpu')) else: tensor_inputs.append(arg) ctx.tensor_indices.append(i) ctx.inputs.append(None) else: ctx.inputs.append(arg) ctx.save_for_backward(*tensor_inputs) return outputs @staticmethod def backward(ctx, *args): if not torch.autograd._is_checkpoint_valid(): raise RuntimeError("Checkpointing is not compatible with .grad() or when an `inputs` parameter is " "passed to .backward(). Please use .backward() and do not pass its `inputs` argument.") # Copy the list to avoid modifying original list. inputs = list(ctx.inputs) tensor_indices = ctx.tensor_indices tensors = ctx.saved_tensors # store the current states bwd_cpu_rng_state = torch.get_rng_state() sync_states() bwd_seed_states = get_states(copy=True) bwd_current_mode = get_current_mode() # set the states to what it used to be torch.set_rng_state(ctx.fwd_cpu_rng_state) for parallel_mode, state in ctx.fwd_seed_states.items(): set_seed_states(parallel_mode, state) set_mode(ctx.fwd_current_mode) if ctx.activation_offload: tensors = copy_to_device(tensors, ctx.device) # Fill in inputs with appropriate saved tensors. for i, idx in enumerate(tensor_indices): inputs[idx] = tensors[i] detached_inputs = detach_variable(tuple(inputs)) if ctx.had_autocast_in_fwd: with torch.enable_grad(), torch.cuda.amp.autocast(): outputs = ctx.run_function(*detached_inputs) else: with torch.enable_grad(): outputs = ctx.run_function(*detached_inputs) if isinstance(outputs, torch.Tensor): outputs = (outputs,) # recover the rng states torch.set_rng_state(bwd_cpu_rng_state) for parallel_mode, state in bwd_seed_states.items(): set_seed_states(parallel_mode, state) set_mode(bwd_current_mode) # run backward() with only tensor that requires grad outputs_with_grad = [] args_with_grad = [] for i in range(len(outputs)): if torch.is_tensor(outputs[i]) and outputs[i].requires_grad: outputs_with_grad.append(outputs[i]) args_with_grad.append(args[i]) if len(outputs_with_grad) == 0: raise RuntimeError("none of output has requires_grad=True," " this checkpoint() is not necessary") torch.autograd.backward(outputs_with_grad, args_with_grad) grads = tuple(inp.grad if isinstance(inp, torch.Tensor) else None for inp in detached_inputs) return (None, None) + grads def checkpoint(function, activation_offload, *args): """Checkpoint the computation while preserve the rng states, modified from Pytorch torch.utils.checkpoint. Args: function: Describe the forward pass function. It should know how to handle the input tuples. args (list): Tuple containing the parameters of the function Returns: Output of running function with provided args. """ return CheckpointFunction.apply(function, activation_offload, *args)