import torch from torch.fx import symbolic_trace from torch.fx.node import Node from colossalai.fx.passes.split_module import split_module def pipe_split(): pass def avgcompute_split_pass(gm: torch.fx.GraphModule, pp_size: int): """ In avgcompute_split_pass, we split module by the fwd flops. """ mod_graph = gm.graph # To use avgcompute_split_pass, we need run meta_info_prop interpreter first. # If nodes don't have meta info, this pass will fall back to normal balanced split pass. check_node = list(mod_graph.nodes)[0] if 'tensor_meta' not in check_node.meta: return balanced_split_pass(gm, pp_size) total_fwd_flop = 0 for node in mod_graph.nodes: total_fwd_flop += node.fwd_flop partition_flop = total_fwd_flop // pp_size accumulate_fwd_flop = 0 for node in mod_graph.nodes: if pp_size <= 1: break if 'pipe_split' in node.name: continue accumulate_fwd_flop += node.fwd_flop if accumulate_fwd_flop >= partition_flop: total_fwd_flop = total_fwd_flop - accumulate_fwd_flop accumulate_fwd_flop = 0 pp_size -= 1 partition_flop = total_fwd_flop // pp_size with mod_graph.inserting_after(node): split_node = mod_graph.create_node('call_function', pipe_split) gm.recompile() return gm def avgnode_split_pass(gm: torch.fx.GraphModule, pp_size: int): """ In avgnode_split_pass, simpliy split graph by node number. """ mod_graph = gm.graph avg_num_node = len(mod_graph.nodes) // pp_size accumulate_num_node = 0 for node in mod_graph.nodes: if pp_size <= 1: break accumulate_num_node += 1 if accumulate_num_node >= avg_num_node: accumulate_num_node = 0 pp_size -= 1 if node.next.op == 'output': with mod_graph.inserting_before(node): split_node = mod_graph.create_node('call_function', pipe_split) else: with mod_graph.inserting_after(node): split_node = mod_graph.create_node('call_function', pipe_split) gm.recompile() return gm def balanced_split_pass(gm: torch.fx.GraphModule, pp_size: int): """ In balanced_split_pass, we split module by the size of parameters(weights+bias). """ mod_graph = gm.graph total_param_amount = 0 for param in mod_graph.owning_module.parameters(): total_param_amount += param.numel() params_per_partition = total_param_amount // pp_size accumulate_param_amount = 0 for node in mod_graph.nodes: if pp_size <= 1: break if node.op == "call_module": target_module = node.graph.owning_module.get_submodule(node.target) for param in target_module.parameters(): accumulate_param_amount += param.numel() if accumulate_param_amount >= params_per_partition: accumulate_param_amount = 0 pp_size -= 1 # If the next node is output node, we will insert split annotation before # node to make sure there is at least one node in last partition. if node.next.op == 'output': with mod_graph.inserting_before(node): split_node = mod_graph.create_node('call_function', pipe_split) else: with mod_graph.inserting_after(node): split_node = mod_graph.create_node('call_function', pipe_split) if pp_size > 1: node_counter = 0 for node in mod_graph.nodes: if pp_size <= 1: break if node.op == 'placeholder': continue elif node_counter == 0: node_counter += 1 else: pp_size -= 1 node_counter = 0 with mod_graph.inserting_before(node): split_node = mod_graph.create_node('call_function', pipe_split) gm.recompile() return gm def balanced_split_pass_v2(gm: torch.fx.GraphModule, pp_size: int): """ In balanced_split_pass_v12, we split module by the size of nodes(weights+bias+outputs). """ mod_graph = gm.graph # To use balanced_split_pass_v2, we need run meta_info_prop interpreter first. # If nodes don't have meta info, this pass will fall back to normal balanced split pass. check_node = list(mod_graph.nodes)[0] if 'tensor_meta' not in check_node.meta: return balanced_split_pass(gm, pp_size) total_element_size = 0 for node in mod_graph.nodes: total_element_size += node.node_size partition_size = total_element_size // pp_size accumulate_node_size = 0 for node in mod_graph.nodes: if pp_size <= 1: break if 'pipe_split' in node.name: continue accumulate_node_size += node.node_size if accumulate_node_size >= partition_size: total_element_size = total_element_size - accumulate_node_size accumulate_node_size = 0 pp_size -= 1 partition_size = total_element_size // pp_size with mod_graph.inserting_after(node): split_node = mod_graph.create_node('call_function', pipe_split) gm.recompile() return gm def uniform_split_pass(gm: torch.fx.GraphModule, pp_size: int): mod_graph = gm.graph valid_children_size = 0 valid_children = [] for module in mod_graph.owning_module.children(): valid_children_size += 1 valid_children.append(module) if valid_children_size < pp_size: # If valid children is not enough to shard, we will use balanced policy instead of uniform policy. return balanced_split_pass(gm, pp_size) layers_per_partition = valid_children_size // pp_size accumulate_layer_amount = 0 for node in mod_graph.nodes: if pp_size <= 1: break if node.op == "call_module": target_module = node.graph.owning_module.get_submodule(node.target) if target_module in valid_children: accumulate_layer_amount += 1 if accumulate_layer_amount == layers_per_partition: accumulate_layer_amount = 0 pp_size -= 1 with mod_graph.inserting_after(node): split_node = mod_graph.create_node('call_function', pipe_split) gm.recompile() return gm def split_with_split_nodes_pass(annotated_gm: torch.fx.GraphModule, merge_output=False): # TODO(lyl): use partition IR to assign partition ID to each node. # Currently: analyzing graph -> annotate graph by inserting split node -> use split module pass to split graph # In future: graph to partitions -> analyzing partition IR -> recombining partitions to get best performance -> assign partition ID to each node part_idx = 0 def split_callback(n: torch.fx.Node): nonlocal part_idx if (n.op, n.target) == ('call_function', pipe_split): part_idx += 1 return part_idx split_mod = split_module(annotated_gm, None, split_callback, merge_output) split_submodules = [] for name, submodule in split_mod.named_modules(): if isinstance(submodule, torch.fx.GraphModule): for node in submodule.graph.nodes: if (node.op, node.target) == ('call_function', pipe_split): submodule.graph.erase_node(node) submodule.recompile() split_submodules.append(submodule) return split_mod, split_submodules