from functools import partial import pytest import torch import torch.distributed as dist import torch.multiprocessing as mp from colossalai.communication import all_gather, all_reduce, reduce_scatter from colossalai.context import ParallelMode from colossalai.core import global_context as gpc from colossalai.initialize import launch from colossalai.utils import free_port, get_current_device from colossalai.testing import rerun_if_address_is_in_use CONFIG = dict(parallel=dict(data=8, pipeline=1, tensor=dict(mode=None, size=1))) SIZE = 8 def check_all_gather(): tensor = torch.tensor([dist.get_rank() * SIZE + j for j in range(SIZE)]) tensor = tensor.to(get_current_device()) print('Before: Rank {0} - {1}'.format(dist.get_rank(), tensor)) tensor, op = all_gather(tensor, 0, ParallelMode.GLOBAL, async_op=True) print('After: Rank {0} - {1}'.format(dist.get_rank(), tensor)) op.wait() print('Complete: Rank {0} - {1}'.format(dist.get_rank(), tensor)) torch.cuda.synchronize() def check_reduce_scatter(): tensor = torch.tensor([dist.get_rank() * SIZE + j for j in range(SIZE)]) tensor = tensor.to(get_current_device()) print('Before: Rank {0} - {1}'.format(dist.get_rank(), tensor)) tensor, op = reduce_scatter(tensor, 0, ParallelMode.GLOBAL, async_op=True) print('After: Rank {0} - {1}'.format(dist.get_rank(), tensor)) op.wait() print('Complete: Rank {0} - {1}'.format(dist.get_rank(), tensor)) torch.cuda.synchronize() def check_all_reduce(): tensor = torch.tensor([dist.get_rank() * SIZE + j for j in range(SIZE)]) tensor = tensor.to(get_current_device()) print('Before: Rank {0} - {1}'.format(dist.get_rank(), tensor)) tensor, op = all_reduce(tensor, ParallelMode.GLOBAL, async_op=True) print('After: Rank {0} - {1}'.format(dist.get_rank(), tensor)) op.wait() print('Complete: Rank {0} - {1}'.format(dist.get_rank(), tensor)) torch.cuda.synchronize() def check_layer(rank, world_size, port): launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') assert dist.get_rank() == gpc.get_global_rank() print('Rank {} / {}'.format(dist.get_rank(), dist.get_world_size())) check_all_gather() check_reduce_scatter() check_all_reduce() gpc.destroy() torch.cuda.empty_cache() @pytest.mark.dist @rerun_if_address_is_in_use() def test_comm(): world_size = 4 run_func = partial(check_layer, world_size=world_size, port=free_port()) mp.spawn(run_func, nprocs=world_size) if __name__ == '__main__': test_comm()