# Train ResNet on CIFAR-10 from scratch ## 🚀 Quick Start This example provides a training script and an evaluation script. The training script provides an example of training ResNet on CIFAR10 dataset from scratch. - Training Arguments - `-p`, `--plugin`: Plugin to use. Choices: `torch_ddp`, `torch_ddp_fp16`, `low_level_zero`. Defaults to `torch_ddp`. - `-r`, `--resume`: Resume from checkpoint file path. Defaults to `-1`, which means not resuming. - `-c`, `--checkpoint`: The folder to save checkpoints. Defaults to `./checkpoint`. - `-i`, `--interval`: Epoch interval to save checkpoints. Defaults to `5`. If set to `0`, no checkpoint will be saved. - `--target_acc`: Target accuracy. Raise exception if not reached. Defaults to `None`. - Eval Arguments - `-e`, `--epoch`: select the epoch to evaluate - `-c`, `--checkpoint`: the folder where checkpoints are found ### Install requirements ```bash pip install -r requirements.txt ``` ### Train The folders will be created automatically. ```bash # train with torch DDP with fp32 colossalai run --nproc_per_node 2 train.py -c ./ckpt-fp32 # train with torch DDP with mixed precision training colossalai run --nproc_per_node 2 train.py -c ./ckpt-fp16 -p torch_ddp_fp16 # train with low level zero colossalai run --nproc_per_node 2 train.py -c ./ckpt-low_level_zero -p low_level_zero ``` ### Eval ```bash # evaluate fp32 training python eval.py -c ./ckpt-fp32 -e 80 # evaluate fp16 mixed precision training python eval.py -c ./ckpt-fp16 -e 80 # evaluate low level zero training python eval.py -c ./ckpt-low_level_zero -e 80 ``` Expected accuracy performance will be: | Model | Single-GPU Baseline FP32 | Booster DDP with FP32 | Booster DDP with FP16 | Booster Low Level Zero | | --------- | ------------------------ | --------------------- | --------------------- | ---------------------- | | ResNet-18 | 85.85% | 84.91% | 85.46% | 84.50% | **Note: the baseline is adapted from the [script](https://pytorch-tutorial.readthedocs.io/en/latest/tutorial/chapter03_intermediate/3_2_2_cnn_resnet_cifar10/) to use `torchvision.models.resnet18`**