from typing import Optional, Tuple, Union import torch import torch.nn as nn import torch.nn.functional as F from ..generation import generate from ..lora import LoRAModule from ..utils import log_probs_from_logits class Actor(LoRAModule): """ Actor model base class. Args: model (nn.Module): Actor Model. lora_rank (int): LoRA rank. lora_train_bias (str): LoRA bias training mode. """ def __init__(self, model: nn.Module, lora_rank: int = 0, lora_train_bias: str = 'none') -> None: super().__init__(lora_rank=lora_rank, lora_train_bias=lora_train_bias) self.model = model self.convert_to_lora() @torch.no_grad() def generate( self, input_ids: torch.Tensor, return_action_mask: bool = True, **kwargs ) -> Union[Tuple[torch.LongTensor, torch.LongTensor], Tuple[torch.LongTensor, torch.LongTensor, torch.BoolTensor]]: sequences = generate(self.model, input_ids, **kwargs) attention_mask = None pad_token_id = kwargs.get('pad_token_id', None) if pad_token_id is not None: attention_mask = sequences.not_equal(pad_token_id).to(dtype=torch.long, device=sequences.device) if not return_action_mask: return sequences, attention_mask, None input_len = input_ids.size(1) eos_token_id = kwargs.get('eos_token_id', None) if eos_token_id is None: action_mask = torch.ones_like(sequences, dtype=torch.bool) else: # left padding may be applied, only mask action action_mask = (sequences[:, input_len:] == eos_token_id).cumsum(dim=-1) == 0 action_mask = F.pad(action_mask, (1 + input_len, -1), value=True) # include eos token and input action_mask[:, :input_len] = False action_mask = action_mask[:, 1:] return sequences, attention_mask, action_mask[:, -(sequences.size(1) - input_len):] def forward(self, sequences: torch.LongTensor, num_actions: int, attention_mask: Optional[torch.Tensor] = None) -> torch.Tensor: """Returns action log probs """ output = self.model(sequences, attention_mask=attention_mask) logits = output['logits'] log_probs = log_probs_from_logits(logits[:, :-1, :], sequences[:, 1:]) return log_probs[:, -num_actions:] def get_base_model(self): return self.model