import operator from enum import Enum from functools import reduce import torch import torch.distributed as dist from torch.distributed import ReduceOp __all__ = [ 'CollectiveCommPattern', 'CommSpec', ] def _all_gather(tensor, comm_spec): ''' Implement all gather operation on device mesh based on information provided by comm_spec. ''' process_groups_list = comm_spec.device_mesh.process_groups_dict[comm_spec.logical_process_axis] for rank_list, process_group in process_groups_list: if dist.get_rank() in rank_list: tensor_list = [ torch.zeros(tensor.shape, dtype=tensor.dtype, device=tensor.device) for _ in range(comm_spec.device_mesh.mesh_shape[comm_spec.logical_process_axis]) ] dist.all_gather(tensor_list, tensor, group=process_group) output = torch.cat(tuple(tensor_list), comm_spec.gather_dim).contiguous() return output def _split(tensor, comm_spec): ''' Implement shard operation on device mesh based on information provided by comm_spec. ''' process_groups_list = comm_spec.device_mesh.process_groups_dict[comm_spec.logical_process_axis] for rank_list, _ in process_groups_list: if dist.get_rank() in rank_list: dim = comm_spec.shard_dim length = tensor.shape[comm_spec.shard_dim] // len(rank_list) start = length * rank_list.index(dist.get_rank()) output = torch.narrow(tensor, dim, start, length).contiguous() return output def _all_to_all(tensor, comm_spec): ''' Implement all to all operation on device mesh based on information provided by comm_spec. ''' process_groups_list = comm_spec.device_mesh.process_groups_dict[comm_spec.logical_process_axis] for rank_list, process_group in process_groups_list: if dist.get_rank() in rank_list: new_shape = list(tensor.shape) new_shape[comm_spec.shard_dim] = new_shape[comm_spec.shard_dim] // len(rank_list) new_shape = torch.Size(new_shape) output_tensor_list = [ torch.zeros(new_shape, dtype=tensor.dtype, device=tensor.device) for _ in range(len(rank_list)) ] dim = comm_spec.shard_dim length = tensor.shape[comm_spec.shard_dim] // len(rank_list) input_tensor_list = [ torch.narrow(tensor, dim, length * i, length).contiguous() for i in range(len(rank_list)) ] group = process_group dist.all_to_all(output_tensor_list, input_tensor_list, group) output = torch.cat(tuple(output_tensor_list), comm_spec.gather_dim).contiguous() return output def _all_reduce(tensor, comm_spec, async_op=False): ''' Implement all reduce operation on device mesh based on information provided by comm_spec. ''' process_groups_list = comm_spec.device_mesh.process_groups_dict[comm_spec.logical_process_axis] for rank_list, process_group in process_groups_list: if dist.get_rank() in rank_list: if not tensor.is_contiguous(): tensor = tensor.contiguous() dist.all_reduce(tensor, op=ReduceOp.SUM, group=process_group, async_op=async_op) return tensor class _ReduceGrad(torch.autograd.Function): """ A customized communication operation which forward is an identity operation, backward is all_reduce operation. Args: input_: input matrix. comm_spec: comm_spec will give information like process group, rank list, etc. """ @staticmethod def symbolic(graph, input_): return input_ @staticmethod def forward(ctx, input_, comm_spec): ctx.comm_spec = comm_spec return input_ @staticmethod def backward(ctx, grad_output): return _all_reduce(grad_output, ctx.comm_spec), None class _ReduceInput(torch.autograd.Function): """ A customized communication operation which forward is all_reduce operation, backward is an identity operation. Args: input_: input matrix. comm_spec: comm_spec will give information like process group, rank list, etc. """ @staticmethod def symbolic(graph, input_): return _all_reduce(input_) @staticmethod def forward(ctx, input_, comm_spec): return _all_reduce(input_, comm_spec) @staticmethod def backward(ctx, grad_output): return grad_output, None class _SplitForwardGatherBackward(torch.autograd.Function): """ A customized communication operation which forward is split operation, backward is an all gather operation. Args: input_: input matrix. comm_spec: comm_spec will give information like process group, rank list, etc. """ @staticmethod def symbolic(graph, input_): return _split(input_) @staticmethod def forward(ctx, input_, comm_spec): ctx.comm_spec = comm_spec return _split(input_, comm_spec) @staticmethod def backward(ctx, grad_output): return _all_gather(grad_output, ctx.comm_spec), None class _GatherForwardSplitBackward(torch.autograd.Function): """ A customized communication operation which forward is an all gather operation, backward is split operation. Args: input_: input matrix. comm_spec: comm_spec will give information like process group, rank list, etc. """ @staticmethod def symbolic(graph, input_): return _all_gather(input_) @staticmethod def forward(ctx, input_, comm_spec): ctx.comm_spec = comm_spec return _all_gather(input_, comm_spec) @staticmethod def backward(ctx, grad_output): return _split(grad_output, ctx.comm_spec), None class _AllToAll(torch.autograd.Function): """ A customized communication operation which forward is an all to all operation, backward is an all to all operation. Args: input_: input matrix. comm_spec: comm_spec will give information like process group, rank list, etc. """ @staticmethod def symbolic(graph, input_): return _all_to_all(input_) @staticmethod def forward(ctx, input_, comm_spec): output = _all_to_all(input_, comm_spec) comm_spec_for_backward = CommSpec(comm_pattern=comm_spec.comm_pattern, sharding_spec=comm_spec.sharding_spec, gather_dim=comm_spec.shard_dim, shard_dim=comm_spec.gather_dim, logical_process_axis=comm_spec.logical_process_axis) ctx.comm_spec = comm_spec_for_backward return output @staticmethod def backward(ctx, grad_outputs): return _all_to_all(grad_outputs, ctx.comm_spec), None def reduce_grad(input_, comm_spec): return _ReduceGrad.apply(input_, comm_spec) def reduce_input(input_, comm_spec): return _ReduceInput.apply(input_, comm_spec) def split_forward_gather_backward(input_, comm_spec): return _SplitForwardGatherBackward.apply(input_, comm_spec) def gather_forward_split_backward(input_, comm_spec): return _GatherForwardSplitBackward.apply(input_, comm_spec) def all_to_all(input_, comm_spec): return _AllToAll.apply(input_, comm_spec) class CollectiveCommPattern(Enum): GATHER_FWD_SPLIT_BWD = 'gather_fwd_split_bwd' ALL2ALL_FWD_ALL2ALL_BWD = 'all2all_fwd_all2all_bwd' SPLIT_FWD_GATHER_BWD = 'split_fwd_gather_bwd' ALLREDUCE_FWD_IDENTITY_BWD = 'all_reduce_fwd_identity_bwd' IDENTITY_FWD_ALLREDUCE_BWD = 'identity_fwd_all_reduce_bwd' class CommSpec: ''' Communication spec is used to record the communication action. It has two main functions: 1. Compute the communication cost which will be used in auto parallel solver. 2. Convert the communication spec to real action which will be used in runtime. It contains comm_pattern to determine the communication method, sharding_spec to determine the communication size, gather_dim and shard_dim to determine the buffer shape, and logical_process_axis Argument: comm_pattern(CollectiveCommPattern): decribe the communication method used in this spec. sharding_spec(ShardingSpec): This is sharding spec of the tensor which will join the communication action. gather_dim(int, Optional): The gather_dim of the tensor will be gathered. shard_dim(int, Optional): The shard_dim of the tensor will be sharded. logical_process_axis(Union(int, List[int]), Optional): The mesh_dim to implement the communication action. ''' def __init__(self, comm_pattern, sharding_spec, gather_dim=None, shard_dim=None, logical_process_axis=None, forward_only=False): self.comm_pattern = comm_pattern self.sharding_spec = sharding_spec self.gather_dim = gather_dim self.shard_dim = shard_dim self.logical_process_axis = logical_process_axis self.forward_only = forward_only if isinstance(self.logical_process_axis, list): self.device_mesh = self.sharding_spec.device_mesh.flatten_device_mesh self.logical_process_axis = 0 else: self.device_mesh = self.sharding_spec.device_mesh def __repr__(self): res_list = ["CommSpec:("] if self.comm_pattern == CollectiveCommPattern.GATHER_FWD_SPLIT_BWD: res_list.append(f"comm_pattern:GATHER_FWD_SPLIT_BWD, ") res_list.append(f"gather_dim:{self.gather_dim}, ") res_list.append(f"logical_process_axis:{self.logical_process_axis})") elif self.comm_pattern == CollectiveCommPattern.ALL2ALL_FWD_ALL2ALL_BWD: res_list.append(f"comm_pattern:ALL2ALL_FWD_ALL2ALL_BWD, ") res_list.append(f"gather_dim:{self.gather_dim}, ") res_list.append(f"shard_dim:{self.shard_dim}, ") res_list.append(f"logical_process_axis: {self.logical_process_axis})") elif self.comm_pattern == CollectiveCommPattern.SPLIT_FWD_GATHER_BWD: res_list.append(f"comm_pattern:SPLIT_FWD_GATHER_BWD, ") res_list.append(f"shard_dim:{self.shard_dim}, ") res_list.append(f"logical_process_axis:{self.logical_process_axis})") elif self.comm_pattern == CollectiveCommPattern.ALLREDUCE_FWD_IDENTITY_BWD: res_list.append(f"comm_pattern:ALLREDUCE_FWD_IDENTITY_BWD, ") res_list.append(f"logical_process_axis:{self.logical_process_axis})") elif self.comm_pattern == CollectiveCommPattern.IDENTITY_FWD_ALLREDUCE_BWD: res_list.append(f"comm_pattern:IDENTITY_FWD_ALLREDUCE_BWD, ") res_list.append(f"logical_process_axis:{self.logical_process_axis})") return ''.join(res_list) def get_comm_cost(self): ''' For all_gather, all2all, and all_reduce operation, the formula provided in DeviceMesh with alpha-beta model is used to compute the communication cost. For shard operation, it is an on-chip operation, so the communication cost is zero. ''' comm_size = reduce(operator.mul, self.sharding_spec.get_sharded_shape_per_device(), 1) cost_dict = {} if self.comm_pattern == CollectiveCommPattern.GATHER_FWD_SPLIT_BWD: forward_communication_cost = self.device_mesh.all_gather_cost(comm_size, self.logical_process_axis) # give a tiny cost to shard backward_communication_cost = 10 if self.comm_pattern == CollectiveCommPattern.ALL2ALL_FWD_ALL2ALL_BWD: forward_communication_cost = self.device_mesh.all_to_all_cost(comm_size, self.logical_process_axis) # grad should have same shape as input tensor # all to all operation has same logical process axis as forward. backward_communication_cost = self.device_mesh.all_to_all_cost(comm_size, self.logical_process_axis) if self.comm_pattern == CollectiveCommPattern.ALLREDUCE_FWD_IDENTITY_BWD: forward_communication_cost = self.device_mesh.all_reduce_cost(comm_size, self.logical_process_axis) backward_communication_cost = 0 if self.comm_pattern == CollectiveCommPattern.IDENTITY_FWD_ALLREDUCE_BWD: forward_communication_cost = 0 backward_communication_cost = self.device_mesh.all_reduce_cost(comm_size, self.logical_process_axis) if self.comm_pattern == CollectiveCommPattern.SPLIT_FWD_GATHER_BWD: # give a tiny cost to shard forward_communication_cost = 10 backward_communication_cost = self.device_mesh.all_gather_cost(comm_size, self.logical_process_axis) if self.forward_only: cost_dict["forward"] = forward_communication_cost cost_dict["backward"] = 0 cost_dict["total"] = cost_dict["forward"] + cost_dict["backward"] else: cost_dict["forward"] = forward_communication_cost cost_dict["backward"] = backward_communication_cost cost_dict["total"] = cost_dict["forward"] + cost_dict["backward"] return cost_dict def covert_spec_to_action(self, tensor): ''' Convert CommSpec into runtime action, implement real collection communication to target tensor. The collection communication action is directed by the CommSpec. Argument: tensor(torch.Tensor): Tensor stored in each device, which could be different in different ranks. ''' if self.comm_pattern in pattern_to_func_dict: tensor = pattern_to_func_dict[self.comm_pattern](tensor, self) else: tensor = tensor return tensor pattern_to_func_dict = { CollectiveCommPattern.GATHER_FWD_SPLIT_BWD: gather_forward_split_backward, CollectiveCommPattern.ALL2ALL_FWD_ALL2ALL_BWD: all_to_all, CollectiveCommPattern.SPLIT_FWD_GATHER_BWD: split_forward_gather_backward, CollectiveCommPattern.ALLREDUCE_FWD_IDENTITY_BWD: reduce_input, CollectiveCommPattern.IDENTITY_FWD_ALLREDUCE_BWD: reduce_grad, }