from copy import deepcopy
from functools import partial
from typing import Tuple

import pytest
import torch
import torch.distributed as dist
import torch.nn as nn
from torch.testing import assert_close
from transformers.models.mixtral.configuration_mixtral import MixtralConfig
from transformers.models.mixtral.modeling_mixtral import MixtralModel

import colossalai
from colossalai.booster.booster import Booster
from colossalai.booster.plugin.moe_hybrid_parallel_plugin import MoeHybridParallelPlugin
from colossalai.cluster import ProcessGroupMesh
from colossalai.interface import OptimizerWrapper
from colossalai.logging import disable_existing_loggers
from colossalai.pipeline.schedule.v_schedule import PipelineGraph, ScheduledNode
from colossalai.pipeline.schedule.zero_bubble_pp import ZeroBubbleVPipeScheduler
from colossalai.pipeline.stage_manager import PipelineStageManager
from colossalai.shardformer.layer.utils import Randomizer
from colossalai.tensor.d_tensor.api import clear_layout_converter
from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn
from colossalai.testing.random import seed_all
from tests.test_moe.moe_utils import assert_loose_close

NUM_BATCH = 8
NUM_TOK_PER_BATCH, NUM_EXPERTS = 4, 4
NUM_LAYERS = 8
HIDDEN_SIZE_PER_HEAD = 4
NUM_HEADS = 4
TOP_K = 1


class MlpModel(nn.Module):
    def __init__(
        self,
        in_dim,
        out_dim,
        num_layers,
        stage_index=None,
        stage_mgr: PipelineStageManager = None,
    ):
        super().__init__()
        self.layers = nn.Sequential(*[nn.Linear(in_dim, out_dim, bias=None) for _ in range(num_layers)])

    def forward(
        self,
        data: torch.Tensor = None,
        hidden_states: torch.Tensor = None,
        stage_index=None,
        stage_mgr: PipelineStageManager = None,
        model_chunk_id: int = None,
    ):
        if stage_mgr is None:
            hidden_states = data
            for layer in self.layers:
                hidden_states = layer(hidden_states)
            return hidden_states
        else:
            # Set not used layer to None
            held_layers = self.layers[stage_index[0] : stage_index[1]]

            # fwd end
            if stage_mgr.is_first_stage() and stage_mgr.model_chunk_id == 1:
                return held_layers(hidden_states)
            # fwd start
            elif stage_mgr.is_first_stage() and stage_mgr.model_chunk_id == 0:
                return {"hidden_states": held_layers(data)}
            # fwd middle
            else:
                return {"hidden_states": held_layers(hidden_states)}


def assert_optim_param_groups(optim_base_param_groups, optim_pp_param_groups):
    for (key_base, val_base), (key_pp, val_pp) in zip(optim_base_param_groups.items(), optim_pp_param_groups.items()):
        if key_base == key_pp:
            if key_base != "params":
                assert val_base == val_pp


def get_model_numel(model: torch.nn.Module) -> Tuple[int, int]:
    num_params = 0
    num_params_trainable = 0
    for p in model.parameters():
        num_params += p.numel()
        if p.requires_grad:
            num_params_trainable += p.numel()
    return num_params, num_params_trainable


# 1) Test manual v_schedule with multiple microbatch
@parameterize(
    "test_config",
    [
        {
            "batch_size": 8,
            "tp_size": 1,
            "pp_size": 4,
            "num_microbatches": 4,
            "zero_stage": 1,
            "precision": "bf16",
            "num_model_chunk": 2,
        },
    ],
)
def run_fwd_bwd_iter_input(test_config):
    # init dist
    rank = dist.get_rank()
    pp_size = test_config["pp_size"]
    pg_mesh = ProcessGroupMesh(pp_size)
    num_microbatch = test_config["num_microbatches"]
    num_model_chunk = test_config["num_model_chunk"]
    # stage_manager
    stage_manager = PipelineStageManager(
        pg_mesh, pipeline_axis=0, enable_interleave=True, num_model_chunks=num_model_chunk
    )

    # schedule list
    zbv_schedule = [
        # stage 0
        [
            # microbatch 0
            # chunk 0 fwd
            ScheduledNode(type="RECV_FORWARD", chunk=0, stage=0, minibatch=0),
            ScheduledNode(type="F", chunk=0, stage=0, minibatch=0),
            ScheduledNode(type="SEND_FORWARD", chunk=0, stage=0, minibatch=0),
            # chunk 1 fwd
            ScheduledNode(type="RECV_FORWARD", chunk=1, stage=0, minibatch=0),
            ScheduledNode(type="F", chunk=1, stage=0, minibatch=0),
            ScheduledNode(type="SEND_FORWARD", chunk=1, stage=0, minibatch=0),
            # chunk 1 bwd
            ScheduledNode(type="RECV_BACKWARD", chunk=1, stage=0, minibatch=0),
            ScheduledNode(type="B", chunk=1, stage=0, minibatch=0),
            ScheduledNode(type="W", chunk=1, stage=0, minibatch=0),
            ScheduledNode(type="SEND_BACKWARD", chunk=1, stage=0, minibatch=0),
            # chunk 0 bwd
            ScheduledNode(type="RECV_BACKWARD", chunk=0, stage=0, minibatch=0),
            ScheduledNode(type="B", chunk=0, stage=0, minibatch=0),
            ScheduledNode(type="W", chunk=0, stage=0, minibatch=0),
            ScheduledNode(type="SEND_BACKWARD", chunk=0, stage=0, minibatch=0),
            # microbatch 1
            # chunk 0 fwd
            ScheduledNode(type="RECV_FORWARD", chunk=0, stage=0, minibatch=1),
            ScheduledNode(type="F", chunk=0, stage=0, minibatch=1),
            ScheduledNode(type="SEND_FORWARD", chunk=0, stage=0, minibatch=1),
            # chunk 1 fwd
            ScheduledNode(type="RECV_FORWARD", chunk=1, stage=0, minibatch=1),
            ScheduledNode(type="F", chunk=1, stage=0, minibatch=1),
            ScheduledNode(type="SEND_FORWARD", chunk=1, stage=0, minibatch=1),
            # chunk 1 bwd
            ScheduledNode(type="RECV_BACKWARD", chunk=1, stage=0, minibatch=1),
            ScheduledNode(type="B", chunk=1, stage=0, minibatch=1),
            ScheduledNode(type="W", chunk=1, stage=0, minibatch=1),
            ScheduledNode(type="SEND_BACKWARD", chunk=1, stage=0, minibatch=1),
            # chunk 0 bwd
            ScheduledNode(type="RECV_BACKWARD", chunk=0, stage=0, minibatch=1),
            ScheduledNode(type="B", chunk=0, stage=0, minibatch=1),
            ScheduledNode(type="W", chunk=0, stage=0, minibatch=1),
            ScheduledNode(type="SEND_BACKWARD", chunk=0, stage=0, minibatch=1),
            # microbatch 2
            # chunk 0 fwd
            ScheduledNode(type="RECV_FORWARD", chunk=0, stage=0, minibatch=2),
            ScheduledNode(type="F", chunk=0, stage=0, minibatch=2),
            ScheduledNode(type="SEND_FORWARD", chunk=0, stage=0, minibatch=2),
            # chunk 1 fwd
            ScheduledNode(type="RECV_FORWARD", chunk=1, stage=0, minibatch=2),
            ScheduledNode(type="F", chunk=1, stage=0, minibatch=2),
            ScheduledNode(type="SEND_FORWARD", chunk=1, stage=0, minibatch=2),
            # chunk 1 bwd
            ScheduledNode(type="RECV_BACKWARD", chunk=1, stage=0, minibatch=2),
            ScheduledNode(type="B", chunk=1, stage=0, minibatch=2),
            ScheduledNode(type="W", chunk=1, stage=0, minibatch=2),
            ScheduledNode(type="SEND_BACKWARD", chunk=1, stage=0, minibatch=2),
            # chunk 0 bwd
            ScheduledNode(type="RECV_BACKWARD", chunk=0, stage=0, minibatch=2),
            ScheduledNode(type="B", chunk=0, stage=0, minibatch=2),
            ScheduledNode(type="W", chunk=0, stage=0, minibatch=2),
            ScheduledNode(type="SEND_BACKWARD", chunk=0, stage=0, minibatch=2),
            # microbatch 3
            # chunk 0 fwd
            ScheduledNode(type="RECV_FORWARD", chunk=0, stage=0, minibatch=3),
            ScheduledNode(type="F", chunk=0, stage=0, minibatch=3),
            ScheduledNode(type="SEND_FORWARD", chunk=0, stage=0, minibatch=3),
            # chunk 1 fwd
            ScheduledNode(type="RECV_FORWARD", chunk=1, stage=0, minibatch=3),
            ScheduledNode(type="F", chunk=1, stage=0, minibatch=3),
            ScheduledNode(type="SEND_FORWARD", chunk=1, stage=0, minibatch=3),
            # chunk 1 bwd
            ScheduledNode(type="RECV_BACKWARD", chunk=1, stage=0, minibatch=3),
            ScheduledNode(type="B", chunk=1, stage=0, minibatch=3),
            ScheduledNode(type="W", chunk=1, stage=0, minibatch=3),
            ScheduledNode(type="SEND_BACKWARD", chunk=1, stage=0, minibatch=3),
            # chunk 0 bwd
            ScheduledNode(type="RECV_BACKWARD", chunk=0, stage=0, minibatch=3),
            ScheduledNode(type="B", chunk=0, stage=0, minibatch=3),
            ScheduledNode(type="W", chunk=0, stage=0, minibatch=3),
            ScheduledNode(type="SEND_BACKWARD", chunk=0, stage=0, minibatch=3),
        ],
        # stage 1
        [
            # microbatch 0
            # chunk 0 fwd
            ScheduledNode(type="RECV_FORWARD", chunk=0, stage=1, minibatch=0),
            ScheduledNode(type="F", chunk=0, stage=1, minibatch=0),
            ScheduledNode(type="SEND_FORWARD", chunk=0, stage=1, minibatch=0),
            # chunk 1 fwd
            ScheduledNode(type="RECV_FORWARD", chunk=1, stage=1, minibatch=0),
            ScheduledNode(type="F", chunk=1, stage=1, minibatch=0),
            ScheduledNode(type="SEND_FORWARD", chunk=1, stage=1, minibatch=0),
            # chunk 1 bwd
            ScheduledNode(type="RECV_BACKWARD", chunk=1, stage=1, minibatch=0),
            ScheduledNode(type="B", chunk=1, stage=1, minibatch=0),
            ScheduledNode(type="W", chunk=1, stage=1, minibatch=0),
            ScheduledNode(type="SEND_BACKWARD", chunk=1, stage=1, minibatch=0),
            # chunk 0 bwd
            ScheduledNode(type="RECV_BACKWARD", chunk=0, stage=1, minibatch=0),
            ScheduledNode(type="B", chunk=0, stage=1, minibatch=0),
            ScheduledNode(type="W", chunk=0, stage=1, minibatch=0),
            ScheduledNode(type="SEND_BACKWARD", chunk=0, stage=0, minibatch=0),
            # microbatch 1
            # chunk 0 fwd
            ScheduledNode(type="RECV_FORWARD", chunk=0, stage=1, minibatch=1),
            ScheduledNode(type="F", chunk=0, stage=1, minibatch=1),
            ScheduledNode(type="SEND_FORWARD", chunk=0, stage=1, minibatch=1),
            # chunk 1 fwd
            ScheduledNode(type="RECV_FORWARD", chunk=1, stage=1, minibatch=1),
            ScheduledNode(type="F", chunk=1, stage=1, minibatch=1),
            ScheduledNode(type="SEND_FORWARD", chunk=1, stage=1, minibatch=1),
            # chunk 1 bwd
            ScheduledNode(type="RECV_BACKWARD", chunk=1, stage=1, minibatch=1),
            ScheduledNode(type="B", chunk=1, stage=1, minibatch=1),
            ScheduledNode(type="W", chunk=1, stage=1, minibatch=1),
            ScheduledNode(type="SEND_BACKWARD", chunk=1, stage=1, minibatch=1),
            # chunk 0 bwd
            ScheduledNode(type="RECV_BACKWARD", chunk=0, stage=1, minibatch=1),
            ScheduledNode(type="B", chunk=0, stage=1, minibatch=1),
            ScheduledNode(type="W", chunk=0, stage=1, minibatch=1),
            ScheduledNode(type="SEND_BACKWARD", chunk=0, stage=0, minibatch=1),
            # microbatch 2
            # chunk 0 fwd
            ScheduledNode(type="RECV_FORWARD", chunk=0, stage=1, minibatch=2),
            ScheduledNode(type="F", chunk=0, stage=1, minibatch=2),
            ScheduledNode(type="SEND_FORWARD", chunk=0, stage=1, minibatch=2),
            # chunk 1 fwd
            ScheduledNode(type="RECV_FORWARD", chunk=1, stage=1, minibatch=2),
            ScheduledNode(type="F", chunk=1, stage=1, minibatch=2),
            ScheduledNode(type="SEND_FORWARD", chunk=1, stage=1, minibatch=2),
            # chunk 1 bwd
            ScheduledNode(type="RECV_BACKWARD", chunk=1, stage=1, minibatch=2),
            ScheduledNode(type="B", chunk=1, stage=1, minibatch=2),
            ScheduledNode(type="W", chunk=1, stage=1, minibatch=2),
            ScheduledNode(type="SEND_BACKWARD", chunk=1, stage=1, minibatch=2),
            # chunk 0 bwd
            ScheduledNode(type="RECV_BACKWARD", chunk=0, stage=1, minibatch=2),
            ScheduledNode(type="B", chunk=0, stage=1, minibatch=2),
            ScheduledNode(type="W", chunk=0, stage=1, minibatch=2),
            ScheduledNode(type="SEND_BACKWARD", chunk=0, stage=0, minibatch=2),
            # microbatch 3
            # chunk 0 fwd
            ScheduledNode(type="RECV_FORWARD", chunk=0, stage=1, minibatch=3),
            ScheduledNode(type="F", chunk=0, stage=1, minibatch=3),
            ScheduledNode(type="SEND_FORWARD", chunk=0, stage=1, minibatch=3),
            # chunk 1 fwd
            ScheduledNode(type="RECV_FORWARD", chunk=1, stage=1, minibatch=3),
            ScheduledNode(type="F", chunk=1, stage=1, minibatch=3),
            ScheduledNode(type="SEND_FORWARD", chunk=1, stage=1, minibatch=3),
            # chunk 1 bwd
            ScheduledNode(type="RECV_BACKWARD", chunk=1, stage=1, minibatch=3),
            ScheduledNode(type="B", chunk=1, stage=1, minibatch=3),
            ScheduledNode(type="W", chunk=1, stage=1, minibatch=3),
            ScheduledNode(type="SEND_BACKWARD", chunk=1, stage=1, minibatch=3),
            # chunk 0 bwd
            ScheduledNode(type="RECV_BACKWARD", chunk=0, stage=1, minibatch=3),
            ScheduledNode(type="B", chunk=0, stage=1, minibatch=3),
            ScheduledNode(type="W", chunk=0, stage=1, minibatch=3),
            ScheduledNode(type="SEND_BACKWARD", chunk=0, stage=0, minibatch=3),
        ],
        # stage 2
        [
            # microbatch 0
            # chunk 0 fwd
            ScheduledNode(type="RECV_FORWARD", chunk=0, stage=2, minibatch=0),
            ScheduledNode(type="F", chunk=0, stage=2, minibatch=0),
            ScheduledNode(type="SEND_FORWARD", chunk=0, stage=2, minibatch=0),
            # chunk 1 fwd
            ScheduledNode(type="RECV_FORWARD", chunk=1, stage=2, minibatch=0),
            ScheduledNode(type="F", chunk=1, stage=2, minibatch=0),
            ScheduledNode(type="SEND_FORWARD", chunk=1, stage=2, minibatch=0),
            # chunk 1 bwd
            ScheduledNode(type="RECV_BACKWARD", chunk=1, stage=2, minibatch=0),
            ScheduledNode(type="B", chunk=1, stage=2, minibatch=0),
            ScheduledNode(type="W", chunk=1, stage=2, minibatch=0),
            ScheduledNode(type="SEND_BACKWARD", chunk=1, stage=2, minibatch=0),
            # chunk 0 bwd
            ScheduledNode(type="RECV_BACKWARD", chunk=0, stage=2, minibatch=0),
            ScheduledNode(type="B", chunk=0, stage=2, minibatch=0),
            ScheduledNode(type="W", chunk=0, stage=2, minibatch=0),
            ScheduledNode(type="SEND_BACKWARD", chunk=0, stage=2, minibatch=0),
            # microbatch 1
            # chunk 0 fwd
            ScheduledNode(type="RECV_FORWARD", chunk=0, stage=2, minibatch=1),
            ScheduledNode(type="F", chunk=0, stage=2, minibatch=1),
            ScheduledNode(type="SEND_FORWARD", chunk=0, stage=2, minibatch=1),
            # chunk 1 fwd
            ScheduledNode(type="RECV_FORWARD", chunk=1, stage=2, minibatch=1),
            ScheduledNode(type="F", chunk=1, stage=2, minibatch=1),
            ScheduledNode(type="SEND_FORWARD", chunk=1, stage=2, minibatch=1),
            # chunk 1 bwd
            ScheduledNode(type="RECV_BACKWARD", chunk=1, stage=2, minibatch=1),
            ScheduledNode(type="B", chunk=1, stage=2, minibatch=1),
            ScheduledNode(type="W", chunk=1, stage=2, minibatch=1),
            ScheduledNode(type="SEND_BACKWARD", chunk=1, stage=2, minibatch=1),
            # chunk 0 bwd
            ScheduledNode(type="RECV_BACKWARD", chunk=0, stage=2, minibatch=1),
            ScheduledNode(type="B", chunk=0, stage=2, minibatch=1),
            ScheduledNode(type="W", chunk=0, stage=2, minibatch=1),
            ScheduledNode(type="SEND_BACKWARD", chunk=0, stage=2, minibatch=1),
            # microbatch 2
            # chunk 0 fwd
            ScheduledNode(type="RECV_FORWARD", chunk=0, stage=2, minibatch=2),
            ScheduledNode(type="F", chunk=0, stage=2, minibatch=2),
            ScheduledNode(type="SEND_FORWARD", chunk=0, stage=2, minibatch=2),
            # chunk 1 fwd
            ScheduledNode(type="RECV_FORWARD", chunk=1, stage=2, minibatch=2),
            ScheduledNode(type="F", chunk=1, stage=2, minibatch=2),
            ScheduledNode(type="SEND_FORWARD", chunk=1, stage=2, minibatch=2),
            # chunk 1 bwd
            ScheduledNode(type="RECV_BACKWARD", chunk=1, stage=2, minibatch=2),
            ScheduledNode(type="B", chunk=1, stage=2, minibatch=2),
            ScheduledNode(type="W", chunk=1, stage=2, minibatch=2),
            ScheduledNode(type="SEND_BACKWARD", chunk=1, stage=2, minibatch=2),
            # chunk 0 bwd
            ScheduledNode(type="RECV_BACKWARD", chunk=0, stage=2, minibatch=2),
            ScheduledNode(type="B", chunk=0, stage=2, minibatch=2),
            ScheduledNode(type="W", chunk=0, stage=2, minibatch=2),
            ScheduledNode(type="SEND_BACKWARD", chunk=0, stage=2, minibatch=2),
            # microbatch 3
            # chunk 0 fwd
            ScheduledNode(type="RECV_FORWARD", chunk=0, stage=2, minibatch=3),
            ScheduledNode(type="F", chunk=0, stage=2, minibatch=3),
            ScheduledNode(type="SEND_FORWARD", chunk=0, stage=2, minibatch=3),
            # chunk 1 fwd
            ScheduledNode(type="RECV_FORWARD", chunk=1, stage=2, minibatch=3),
            ScheduledNode(type="F", chunk=1, stage=2, minibatch=3),
            ScheduledNode(type="SEND_FORWARD", chunk=1, stage=2, minibatch=3),
            # chunk 1 bwd
            ScheduledNode(type="RECV_BACKWARD", chunk=1, stage=2, minibatch=3),
            ScheduledNode(type="B", chunk=1, stage=2, minibatch=3),
            ScheduledNode(type="W", chunk=1, stage=2, minibatch=3),
            ScheduledNode(type="SEND_BACKWARD", chunk=1, stage=2, minibatch=3),
            # chunk 0 bwd
            ScheduledNode(type="RECV_BACKWARD", chunk=0, stage=2, minibatch=3),
            ScheduledNode(type="B", chunk=0, stage=2, minibatch=3),
            ScheduledNode(type="W", chunk=0, stage=2, minibatch=3),
            ScheduledNode(type="SEND_BACKWARD", chunk=0, stage=2, minibatch=3),
        ],
        # stage 3
        [
            # microbatch 0
            # chunk 0 fwd
            ScheduledNode(type="RECV_FORWARD", chunk=0, stage=3, minibatch=0),
            ScheduledNode(type="F", chunk=0, stage=3, minibatch=0),
            ScheduledNode(type="SEND_FORWARD", chunk=0, stage=3, minibatch=0),
            # chunk 1 fwd
            ScheduledNode(type="RECV_FORWARD", chunk=1, stage=3, minibatch=0),
            ScheduledNode(type="F", chunk=1, stage=3, minibatch=0),
            ScheduledNode(type="SEND_FORWARD", chunk=1, stage=3, minibatch=0),
            # chunk 1 bwd
            ScheduledNode(type="RECV_BACKWARD", chunk=1, stage=3, minibatch=0),
            ScheduledNode(type="B", chunk=1, stage=3, minibatch=0),
            ScheduledNode(type="W", chunk=1, stage=3, minibatch=0),
            ScheduledNode(type="SEND_BACKWARD", chunk=1, stage=3, minibatch=0),
            # chunk 0 bwd
            ScheduledNode(type="RECV_BACKWARD", chunk=0, stage=3, minibatch=0),
            ScheduledNode(type="B", chunk=0, stage=3, minibatch=0),
            ScheduledNode(type="W", chunk=0, stage=3, minibatch=0),
            ScheduledNode(type="SEND_BACKWARD", chunk=0, stage=3, minibatch=0),
            # microbatch 1
            # chunk 0 fwd
            ScheduledNode(type="RECV_FORWARD", chunk=0, stage=3, minibatch=1),
            ScheduledNode(type="F", chunk=0, stage=3, minibatch=1),
            ScheduledNode(type="SEND_FORWARD", chunk=0, stage=3, minibatch=1),
            # chunk 1 fwd
            ScheduledNode(type="RECV_FORWARD", chunk=1, stage=3, minibatch=1),
            ScheduledNode(type="F", chunk=1, stage=3, minibatch=1),
            ScheduledNode(type="SEND_FORWARD", chunk=1, stage=3, minibatch=1),
            # chunk 1 bwd
            ScheduledNode(type="RECV_BACKWARD", chunk=1, stage=3, minibatch=1),
            ScheduledNode(type="B", chunk=1, stage=3, minibatch=1),
            ScheduledNode(type="W", chunk=1, stage=3, minibatch=1),
            ScheduledNode(type="SEND_BACKWARD", chunk=1, stage=3, minibatch=1),
            # chunk 0 bwd
            ScheduledNode(type="RECV_BACKWARD", chunk=0, stage=3, minibatch=1),
            ScheduledNode(type="B", chunk=0, stage=3, minibatch=1),
            ScheduledNode(type="W", chunk=0, stage=3, minibatch=1),
            ScheduledNode(type="SEND_BACKWARD", chunk=0, stage=3, minibatch=1),
            # microbatch 2
            # chunk 0 fwd
            ScheduledNode(type="RECV_FORWARD", chunk=0, stage=3, minibatch=2),
            ScheduledNode(type="F", chunk=0, stage=3, minibatch=2),
            ScheduledNode(type="SEND_FORWARD", chunk=0, stage=3, minibatch=2),
            # chunk 1 fwd
            ScheduledNode(type="RECV_FORWARD", chunk=1, stage=3, minibatch=2),
            ScheduledNode(type="F", chunk=1, stage=3, minibatch=2),
            ScheduledNode(type="SEND_FORWARD", chunk=1, stage=3, minibatch=2),
            # chunk 1 bwd
            ScheduledNode(type="RECV_BACKWARD", chunk=1, stage=3, minibatch=2),
            ScheduledNode(type="B", chunk=1, stage=3, minibatch=2),
            ScheduledNode(type="W", chunk=1, stage=3, minibatch=2),
            ScheduledNode(type="SEND_BACKWARD", chunk=1, stage=3, minibatch=2),
            # chunk 0 bwd
            ScheduledNode(type="RECV_BACKWARD", chunk=0, stage=3, minibatch=2),
            ScheduledNode(type="B", chunk=0, stage=3, minibatch=2),
            ScheduledNode(type="W", chunk=0, stage=3, minibatch=2),
            ScheduledNode(type="SEND_BACKWARD", chunk=0, stage=3, minibatch=2),
            # microbatch 3
            # chunk 0 fwd
            ScheduledNode(type="RECV_FORWARD", chunk=0, stage=3, minibatch=3),
            ScheduledNode(type="F", chunk=0, stage=3, minibatch=3),
            ScheduledNode(type="SEND_FORWARD", chunk=0, stage=3, minibatch=3),
            # chunk 1 fwd
            ScheduledNode(type="RECV_FORWARD", chunk=1, stage=3, minibatch=3),
            ScheduledNode(type="F", chunk=1, stage=3, minibatch=3),
            ScheduledNode(type="SEND_FORWARD", chunk=1, stage=3, minibatch=3),
            # chunk 1 bwd
            ScheduledNode(type="RECV_BACKWARD", chunk=1, stage=3, minibatch=3),
            ScheduledNode(type="B", chunk=1, stage=3, minibatch=3),
            ScheduledNode(type="W", chunk=1, stage=3, minibatch=3),
            ScheduledNode(type="SEND_BACKWARD", chunk=1, stage=3, minibatch=3),
            # chunk 0 bwd
            ScheduledNode(type="RECV_BACKWARD", chunk=0, stage=3, minibatch=3),
            ScheduledNode(type="B", chunk=0, stage=3, minibatch=3),
            ScheduledNode(type="W", chunk=0, stage=3, minibatch=3),
            ScheduledNode(type="SEND_BACKWARD", chunk=0, stage=3, minibatch=3),
        ],
    ]

    scheduler = ZeroBubbleVPipeScheduler(
        schedule=zbv_schedule,  # hint: send whole schedule or local schedule only ?
        stage_manager=stage_manager,
        num_model_chunks=pp_size,
        num_microbatch=num_microbatch,
        overlap_p2p=False,
    )

    # loss func
    def criterion(x, *args, **kwargs):
        return (x * x).mean()

    # init model and input
    batch_size = 4
    num_layers = 8
    in_dim = out_dim = 8
    print(f"Before init Model: {torch.cuda.memory_allocated()/1024**3 :.3f} GB on device {stage_manager.get_rank()};")
    model = MlpModel(in_dim=in_dim, out_dim=out_dim, num_layers=num_layers).to(rank)
    data_iter = [torch.rand(batch_size, in_dim, out_dim, requires_grad=True).to(rank)]

    input_base = [t.clone() for t in data_iter]
    model_base = deepcopy(model)

    if rank == 0:
        # layer 0 & 7 to chunk 0 on rank0
        local_chunk = torch.nn.ModuleList().to(rank)
        for idx, sub_model in enumerate(model.layers):
            if idx == 0 or idx == 7:
                local_chunk.append(sub_model)
    elif rank == 1:
        # layer 1 & 6 to chunk 1 on rank1
        local_chunk = torch.nn.ModuleList().to(rank)
        for idx, sub_model in enumerate(model.layers):
            if idx == 1 or idx == 6:
                local_chunk.append(sub_model)
    elif rank == 2:
        # layer 2 & 5 to chunk 2 on rank2
        local_chunk = torch.nn.ModuleList().to(rank)
        for idx, sub_model in enumerate(model.layers):
            if idx == 2 or idx == 5:
                local_chunk.append(sub_model)
    else:
        # layer 3 & 4 to chunk 3 on rank3
        local_chunk = torch.nn.ModuleList().to(rank)
        for idx, sub_model in enumerate(model.layers):
            if idx == 3 or idx == 4:
                local_chunk.append(sub_model)
    # init optimizer
    optimizer_base = torch.optim.SGD(model_base.parameters(), lr=1e-5)
    optimizer_pp = OptimizerWrapper(torch.optim.SGD(local_chunk.parameters(), lr=1e-5))

    print(
        f"After init Model & input: {torch.cuda.memory_allocated()/1024**3 :.3f} GB on device {stage_manager.get_rank()};"
    )

    torch.cuda.synchronize()
    result = scheduler.forward_backward_step(
        model_chunk=local_chunk,
        data_iter=iter(data_iter),
        criterion=criterion,
        optimizer=optimizer_pp,
        return_loss=True,
        return_outputs=True,
    )

    optimizer_pp.step()

    ##########################
    # Fwd bwd for base
    ##########################
    # fwd & bwd
    output_base = model_base(input_base[0])
    loss_base = criterion(output_base)
    loss_base.backward()
    optimizer_base.step()
    print(f"After base fwd & bwd: {torch.cuda.memory_allocated()/1024**3 :.3f} GB;")

    ##########################
    # assert weight
    ##########################
    if rank == 0:
        # layer 0
        assert_close(local_chunk[0].weight, model_base.layers[0].weight)
        assert_close(local_chunk[0].weight.grad, model_base.layers[0].weight.grad)
        # layer 7
        assert_close(local_chunk[1].weight, model_base.layers[7].weight)
        assert_close(local_chunk[1].weight.grad, model_base.layers[7].weight.grad)
    if rank == 1:
        # layer 1
        assert_close(local_chunk[0].weight, model_base.layers[1].weight)
        assert_close(local_chunk[0].weight.grad, model_base.layers[1].weight.grad)
        # layer 6
        assert_close(local_chunk[1].weight, model_base.layers[6].weight)
        assert_close(local_chunk[1].weight.grad, model_base.layers[6].weight.grad)
    if rank == 2:
        # layer 2
        assert_close(local_chunk[0].weight, model_base.layers[2].weight)
        assert_close(local_chunk[0].weight.grad, model_base.layers[2].weight.grad)
        # layer 5
        assert_close(local_chunk[1].weight, model_base.layers[5].weight)
        assert_close(local_chunk[1].weight.grad, model_base.layers[5].weight.grad)
    if rank == 3:
        # layer 3
        assert_close(local_chunk[0].weight, model_base.layers[3].weight)
        assert_close(local_chunk[0].weight.grad, model_base.layers[3].weight.grad)
        # layer 4
        assert_close(local_chunk[1].weight, model_base.layers[4].weight)
        assert_close(local_chunk[1].weight.grad, model_base.layers[4].weight.grad)


# 2) add optimizer base 1)
@parameterize(
    "test_config",
    [
        {
            "batch_size": 8,
            "tp_size": 1,
            "pp_size": 4,
            "num_microbatches": 4,
            "zero_stage": 1,
            "precision": "bf16",
            "num_model_chunk": 2,
        },
        {
            "batch_size": 8,
            "tp_size": 1,
            "pp_size": 4,
            "num_microbatches": 8,
            "zero_stage": 1,
            "precision": "bf16",
            "num_model_chunk": 2,
        },
    ],
)
def run_fwd_bwd_vschedule_with_optim(test_config):
    # init dist
    rank = dist.get_rank()
    pp_size = test_config["pp_size"]
    pg_mesh = ProcessGroupMesh(pp_size)
    num_microbatch = test_config["num_microbatches"]
    num_model_chunk = test_config["num_model_chunk"]
    # stage_manager
    stage_manager = PipelineStageManager(
        pg_mesh, pipeline_axis=0, enable_interleave=True, num_model_chunks=num_model_chunk, use_zbv=True
    )

    h, a, s = 4096, 32, 1024
    mem_f = 34 * h + 5 * a * s
    mem_w = -32 * h
    mem_b = -mem_w - mem_f
    graph = PipelineGraph(
        n_stage=pp_size,
        n_micro=num_microbatch,
        f_cost=1,
        b_cost=1,
        w_cost=1,
        c_cost=1,
        f_mem=mem_f,
        b_mem=mem_b,
        w_mem=mem_w,
        # max_mem=mem_f * (p * 2 + m_offset),
    )

    zbv_schedule = graph.get_v_schedule()

    scheduler = ZeroBubbleVPipeScheduler(
        schedule=zbv_schedule,  # hint: send whole schedule or local schedule only ?
        stage_manager=stage_manager,
        num_model_chunks=num_model_chunk,
        num_microbatch=num_microbatch,
        overlap_p2p=False,
    )

    # init loss func
    def criterion(x, *args, **kwargs):
        x = x["hidden_states"]
        return (x * x).mean()

    def criterion_base(x, *args, **kwargs):
        return (x * x).mean()

    # init model and input
    batch_size = test_config["batch_size"]
    num_layers = 8
    assert num_layers % num_model_chunk == 0, f"Model with {num_layers} layer can not dist on {num_model_chunk} chunk"
    in_dim = out_dim = 1024
    before_init_memory = torch.cuda.memory_allocated() / 1024**3
    print(f"Before init Model: {before_init_memory :.3f} GB on device {stage_manager.get_rank()};")
    model = MlpModel(in_dim=in_dim, out_dim=out_dim, num_layers=num_layers).to(rank)
    data_iter = {"data": torch.rand(batch_size, in_dim, out_dim, requires_grad=True).to(rank)}
    input_base = {k: v.clone() for k, v in data_iter.items()}
    model_base = deepcopy(model)
    model_pp = deepcopy(model)
    layers_per_stage = stage_manager.distribute_layers(len(model.layers))
    stage_manager.stage_indices = stage_manager.get_stage_index(layers_per_stage)

    model_pp._forward = model_pp.forward

    model_pp.forward = partial(model_pp._forward, stage_mgr=stage_manager)

    # init optimizer
    optimizer_base = torch.optim.SGD(model_base.parameters(), momentum=0.1, lr=1e-5)
    optimizer_pp = OptimizerWrapper(torch.optim.SGD(model_pp.parameters(), momentum=0.1, lr=1e-5))

    after_init_memory = torch.cuda.memory_allocated() / 1024**3
    print(f"After init Model & input: {after_init_memory :.5f} GB on device {stage_manager.get_rank()};")

    torch.cuda.synchronize()
    result = scheduler.forward_backward_step(
        model_chunk=model_pp,
        data_iter=iter([data_iter]),
        criterion=criterion,
        optimizer=optimizer_pp,
        return_loss=True,
        return_outputs=True,
    )

    optimizer_pp.step()

    after_pp_step_memory = torch.cuda.memory_allocated() / 1024**3

    # assert memory
    if rank != 0:
        # w.grad: hid_dim * hid_dim * microbatch * 4(fp32) * 2 (2 layer in each stage) / 1024**3
        # output: hid_dim * hid_dim * microbatch * 4(fp32) / 1024**3
        # optim: state hid_dim * hid_dim * 4(fp32) * 2 (2 layer in each stage) / 1024**3
        print(
            f" num_microbatch {num_microbatch} rank {rank}: {(after_pp_step_memory - after_init_memory)} <= {(in_dim * in_dim * 4 * 5 * batch_size / 1024**3)}"
        )
        assert (after_pp_step_memory - after_init_memory) <= (in_dim * in_dim * 4 * 5 * batch_size / 1024**3)
    else:
        # rank0 will also hold output;
        print(
            f" num_microbatch {num_microbatch} rank {rank}: {round((after_pp_step_memory - after_init_memory), 5)} <= {round((in_dim * in_dim * 4 * 5 * batch_size / 1024**3 + batch_size * in_dim * in_dim * 4 / 1024**3), 5)}"
        )
        assert round((after_pp_step_memory - after_init_memory), 5) <= round(
            (in_dim * in_dim * 4 * 5 * batch_size / 1024**3 + batch_size * in_dim * in_dim * 4 / 1024**3), 5
        )

    ##########################
    # Fwd bwd for base
    ##########################
    # fwd & bwd
    # output_base = model_base(input_base["data"])
    output_base = model_base.forward(data=input_base["data"])
    loss_base = criterion_base(output_base)
    loss_base.backward()
    optimizer_base.step()

    ##########################
    # assert loss & output
    ##########################
    # only chunk 1 stage 0 hold loss and output
    if rank == 0:
        assert_close(result["loss"], loss_base)
        assert_close(result["outputs"]["hidden_states"], output_base)

    # ##########################
    # # assert weight & optim state
    # ##########################
    optim_base_state = optimizer_base.state_dict()["state"]
    optim_pp_state = optimizer_pp.state_dict()["state"]
    optim_base_param_groups = optimizer_base.state_dict()["param_groups"][0]
    optim_pp_param_groups = optimizer_pp.state_dict()["param_groups"][0]

    if rank == 0:
        # layer 0
        assert_close(model_pp.layers[0].weight, model_base.layers[0].weight)
        assert_close(model_pp.layers[0].weight.grad, model_base.layers[0].weight.grad)
        assert_close(optim_pp_state[0]["momentum_buffer"], optim_base_state[0]["momentum_buffer"])
        # layer 7
        assert_close(model_pp.layers[7].weight, model_base.layers[7].weight)
        assert_close(model_pp.layers[7].weight.grad, model_base.layers[7].weight.grad)
        assert_close(optim_pp_state[7]["momentum_buffer"], optim_base_state[7]["momentum_buffer"])
    if rank == 1:
        # layer 1
        assert_close(model_pp.layers[1].weight, model_base.layers[1].weight)
        assert_close(model_pp.layers[1].weight.grad, model_base.layers[1].weight.grad)
        assert_close(optim_pp_state[1]["momentum_buffer"], optim_base_state[1]["momentum_buffer"])
        # layer 6
        assert_close(model_pp.layers[6].weight, model_base.layers[6].weight)
        assert_close(model_pp.layers[6].weight.grad, model_base.layers[6].weight.grad)
        assert_close(optim_pp_state[6]["momentum_buffer"], optim_base_state[6]["momentum_buffer"])
    if rank == 2:
        # layer 2
        assert_close(model_pp.layers[2].weight, model_base.layers[2].weight)
        assert_close(model_pp.layers[2].weight.grad, model_base.layers[2].weight.grad)
        assert_close(optim_pp_state[2]["momentum_buffer"], optim_base_state[2]["momentum_buffer"])
        # layer 5
        assert_close(model_pp.layers[5].weight, model_base.layers[5].weight)
        assert_close(model_pp.layers[5].weight.grad, model_base.layers[5].weight.grad)
        assert_close(optim_pp_state[5]["momentum_buffer"], optim_base_state[5]["momentum_buffer"])
    if rank == 3:
        # layer 3
        assert_close(model_pp.layers[3].weight, model_base.layers[3].weight)
        assert_close(model_pp.layers[3].weight.grad, model_base.layers[3].weight.grad)
        assert_close(optim_pp_state[3]["momentum_buffer"], optim_base_state[3]["momentum_buffer"])
        # layer 4
        assert_close(model_pp.layers[4].weight, model_base.layers[4].weight)
        assert_close(model_pp.layers[4].weight.grad, model_base.layers[4].weight.grad)
        assert_close(optim_pp_state[4]["momentum_buffer"], optim_base_state[4]["momentum_buffer"])

    # assert optim param_groups
    assert_optim_param_groups(optim_base_param_groups, optim_pp_param_groups)


# TODO:3) support booster & Hybrid base 2)
def run_with_hybridplugin(test_config):
    pass


# TODO:4) support booster & MoEHybrid base 2)
@parameterize(
    "config",
    [
        (0, 1, 4, 1, 1),
        (1, 2, 2, 1, 1),
        (1, 2, 1, 2, 1),
        (1, 2, 1, 1, 2),
    ],
)
def run_with_booster_moehybridplugin(config: Tuple[int, ...]):
    test_config = config
    stage, ep_size, pp_size, tp_size, sp_size = config
    num_microbatches = pp_size
    dist.get_world_size()
    rank = dist.get_rank()
    dtype, precision = torch.float16, "fp16"
    torch.cuda.set_device(dist.get_rank())

    ########
    # init base model
    ########
    assert pp_size <= NUM_LAYERS, "pp_size should be less than or equal to NUM_LAYERS"
    config = MixtralConfig(
        hidden_size=HIDDEN_SIZE_PER_HEAD * NUM_HEADS,
        intermediate_size=HIDDEN_SIZE_PER_HEAD * NUM_HEADS * 2,
        num_hidden_layers=NUM_LAYERS,
        num_attention_heads=NUM_HEADS,
        num_key_value_heads=NUM_HEADS,
        num_local_experts=NUM_EXPERTS,
        num_experts_per_tok=TOP_K,
        attn_implementation="flash_attention_2",
    )

    # init model with the same seed
    seed_all(10086)

    torch_model = MixtralModel(config).to(dtype).cuda()
    # TODO: Support MixtralForCausalLM
    # torch_model = MixtralForCausalLM(config).to(dtype).cuda()
    torch_optimizer = torch.optim.SGD(torch_model.parameters(), lr=1)
    # init schedule
    h, a, s = config.hidden_size, config.num_attention_heads, 1024
    mem_f = 34 * h + 5 * a * s
    mem_w = -32 * h
    mem_b = -mem_w - mem_f
    graph = PipelineGraph(
        n_stage=pp_size,
        n_micro=num_microbatches,
        f_cost=1,
        b_cost=1,
        w_cost=1,
        c_cost=1,
        f_mem=mem_f,
        b_mem=mem_b,
        w_mem=mem_w,
        # max_mem=mem_f * (p * 2 + m_offset),
    )

    zbv_schedule = graph.get_v_schedule()

    # init MoeHybridPlugin
    plugin = MoeHybridParallelPlugin(
        pp_size=pp_size,
        num_microbatches=pp_size,
        tp_size=tp_size,
        sp_size=sp_size,
        ep_size=ep_size,
        zero_stage=stage,
        enable_sequence_parallelism=sp_size > 1,
        sequence_parallelism_mode="all_to_all" if sp_size > 1 else None,
        overlap_communication=False,
        initial_scale=1,
        precision=precision,
        find_unused_parameters=True,
        pp_style="zbv",
        scheduler_nodes=zbv_schedule,
        num_model_chunks=2,
    )

    dp_size = plugin.dp_size

    booster = Booster(plugin=plugin)

    ########
    # init pp model
    ########

    parallel_model = deepcopy(torch_model)
    parallel_optimizer = torch.optim.SGD(parallel_model.parameters(), lr=1)
    parallel_model, parallel_optimizer, _, _, _ = booster.boost(parallel_model, parallel_optimizer)
    # create different input along dp axis
    seed_all(1453 + rank)

    torch_model.train()
    parallel_model.train()
    for _ in range(2):
        # gen random input
        input_embeddings = torch.rand(
            NUM_BATCH, NUM_TOK_PER_BATCH, HIDDEN_SIZE_PER_HEAD * NUM_HEADS, requires_grad=True
        ).cuda()
        dist.all_reduce(
            input_embeddings, group=plugin.pp_group
        )  # pp inputs except the first stage doesn't matter, but need to be replicate for torch model check

        dist.all_reduce(input_embeddings, group=plugin.tp_group)  # tp group duplicate input
        dist.all_reduce(input_embeddings, group=plugin.sp_group)  # sp group duplicate input

        # run the model with hybrid parallel
        if booster.plugin.stage_manager is not None:
            # for test with pp
            data_iter = iter([{"inputs_embeds": input_embeddings}])
            sharded_output = booster.execute_pipeline(
                data_iter,
                parallel_model,
                lambda x, y: x.last_hidden_state.mean(),
                parallel_optimizer,
                return_loss=True,
                return_outputs=True,
            )
            # stage 0 chunk 0
            parallel_output = None
            if (
                booster.plugin.stage_manager.is_first_stage(ignore_chunk=True)
                and rank == dist.get_process_group_ranks(plugin.pp_group)[0]
            ):
                parallel_output = sharded_output["loss"]
            else:
                parallel_output = torch.tensor(12345.0, device="cuda")
            # broadcast along pp axis
            dist.broadcast(parallel_output, src=dist.get_process_group_ranks(plugin.pp_group)[0], group=plugin.pp_group)

        else:
            # for test without pp
            parallel_output = parallel_model(inputs_embeds=input_embeddings.to(dtype)).last_hidden_state.mean()
            parallel_optimizer.backward(parallel_output)
        parallel_optimizer.step()
        parallel_optimizer.zero_grad()
        dist.all_reduce(parallel_output, group=plugin.dp_group)

        # ===================================================================================
        # run normal model with all dp(different) inputs
        all_inputs = [torch.empty_like(input_embeddings) for _ in range(dp_size)]
        dist.all_gather(all_inputs, input_embeddings, group=plugin.dp_group)
        torch_output_sum = 0
        for input_data_ in all_inputs:
            torch_output = torch_model(inputs_embeds=input_data_.to(dtype)).last_hidden_state.mean()
            torch_output.backward()
            torch_output_sum += torch_output.detach()
        # avg dp grads follows zero optimizer
        for p in torch_model.parameters():
            if p.grad is not None:
                p.grad /= dp_size
        torch_optimizer.step()
        torch_optimizer.zero_grad()
        assert_loose_close(parallel_output, torch_output_sum, dtype=dtype)
        print(f"rank {dist.get_rank()} config {test_config}  test passed")
        clear_layout_converter()
        Randomizer.reset_index()
        torch.cuda.empty_cache()


def run_dist(rank, world_size, port):
    disable_existing_loggers()
    colossalai.launch(rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl")
    # run_fwd_bwd_vschedule_with_optim()
    run_with_booster_moehybridplugin()


@pytest.mark.dist
@rerun_if_address_is_in_use()
def test_pp():
    spawn(
        run_dist,
        nprocs=4,
    )


# python -m pytest -s tests/test_pipeline/test_schedule/test_zerobubble_pp.py
if __name__ == "__main__":
    test_pp()