from functools import partial import colossalai import pytest import torch import torch.multiprocessing as mp import torch.distributed as dist from colossalai.testing import rerun_if_address_is_in_use from colossalai.utils import free_port, get_current_device from colossalai.tensor import ColoTensorSpec, ProcessGroup, ColoTensor, ShardSpec from colossalai.tensor.distspec import DistPlacementPattern from tests.test_tensor.common_utils import split_param_row_tp1d, split_param_col_tp1d, debug_print def exam_view_core(pg): # the case of replicated ColoTensors x = torch.randn(4, 4).cuda() x_colo = ColoTensor(x, ColoTensorSpec(pg)) y = x.view(2, -1, 2) y_colo = x_colo.view(2, -1, 2) assert torch.all(y == y_colo) assert y_colo.dist_spec.placement == DistPlacementPattern.REPLICATE # the perfect case of col-sliced ColoTensors split_param_col_tp1d(x_colo, pg) z = x.view(torch.Size((2, 1, 2, -1))) z_colo = x_colo.view(torch.Size((2, 1, 2, -1))) if dist.get_rank() == 0: z = z[:, :, :, 0:2] else: z = z[:, :, :, 2:] assert torch.all(z == z_colo) assert z_colo.dist_spec == x_colo.dist_spec # the perfect case of row-sliced ColoTensors split_param_row_tp1d(x_colo, pg) z = x.view(torch.Size((-1, 2, 2))) z_colo = x_colo.view(torch.Size((-1, 2, 2))) if dist.get_rank() == 0: z = z[0:2, :, :] else: z = z[2:, :, :] assert torch.all(z == z_colo) assert z_colo.dist_spec == x_colo.dist_spec # the normal case of row-sliced ColoTensors z = x.view(-1, 2, 2, 2) z_colo = x_colo.view(-1, 2, 2, 2) assert torch.all(z == z_colo) assert y_colo.dist_spec.placement == DistPlacementPattern.REPLICATE def exam_view_autograd(pg): x = torch.randn(8, 2, device=get_current_device(), requires_grad=True) y = torch.randn(8, 2, device=get_current_device(), requires_grad=True) with torch.no_grad(): y.copy_(x) y = ColoTensor(y, ColoTensorSpec(pg)) y_slice = y.redistribute(ShardSpec([-1], [pg.tp_world_size()])) xx = x.view(2, 2, -1) yy_slice = y_slice.view(2, 2, -1) yy = yy_slice.to_replicate() grad = torch.randn(2, 2, 4, device=get_current_device()) xx.backward(grad) yy.backward(grad) assert torch.all(x.grad == y.grad) def exam_view_errors(pg): x = torch.randn(8, 2, device=get_current_device()) x = ColoTensor(x, ColoTensorSpec(pg)) split_param_row_tp1d(x, pg) x.view('a', 'b', 'c') x.view(8, -1) x.view([-2, -2, -2]) x.view((-1, -1, -1)) def run_dist(rank, world_size, port): colossalai.launch(config=dict(), rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') pg = ProcessGroup(tp_degree=torch.distributed.get_world_size()) exam_view_core(pg) exam_view_autograd(pg) # exam_view_errors(pg) @pytest.mark.dist @pytest.mark.parametrize('world_size', [2]) @rerun_if_address_is_in_use() def test_view(world_size): run_func = partial(run_dist, world_size=world_size, port=free_port()) mp.spawn(run_func, nprocs=world_size) if __name__ == '__main__': test_view(2)