# adapted from Hugging Face accelerate/utils/dataclasses.py import warnings from dataclasses import dataclass, field from typing import List import torch @dataclass class BnbQuantizationConfig: """ A plugin to enable BitsAndBytes 4bit and 8bit quantization """ load_in_8bit: bool = field(default=False, metadata={"help": "enable 8bit quantization."}) llm_int8_threshold: float = field( default=6.0, metadata={"help": "value of the outliner threshold. only relevant when load_in_8bit=True"} ) load_in_4bit: bool = field(default=False, metadata={"help": "enable 4bit quantization."}) bnb_4bit_quant_type: str = field( default="fp4", metadata={ "help": "set the quantization data type in the `bnb.nn.Linear4Bit` layers. Options are {'fp4','np4'}." }, ) bnb_4bit_use_double_quant: bool = field( default=False, metadata={ "help": "enable nested quantization where the quantization constants from the first quantization are quantized again." }, ) bnb_4bit_compute_dtype: bool = field( default="fp16", metadata={ "help": "This sets the computational type which might be different than the input time. For example, inputs might be " "fp32, but computation can be set to bf16 for speedups. Options are {'fp32','fp16','bf16'}." }, ) torch_dtype: torch.dtype = field( default=None, metadata={ "help": "this sets the dtype of the remaining non quantized layers. `bitsandbytes` library suggests to set the value" "to `torch.float16` for 8 bit model and use the same dtype as the compute dtype for 4 bit model " }, ) skip_modules: List[str] = field( default=None, metadata={ "help": "an explicit list of the modules that we don't quantize. The dtype of these modules will be `torch_dtype`." }, ) keep_in_fp32_modules: List[str] = field( default=None, metadata={"help": "an explicit list of the modules that we don't quantize. We keep them in `torch.float32`."}, ) def __post_init__(self): if isinstance(self.bnb_4bit_compute_dtype, str): if self.bnb_4bit_compute_dtype == "fp32": self.bnb_4bit_compute_dtype = torch.float32 elif self.bnb_4bit_compute_dtype == "fp16": self.bnb_4bit_compute_dtype = torch.float16 elif self.bnb_4bit_compute_dtype == "bf16": self.bnb_4bit_compute_dtype = torch.bfloat16 else: raise ValueError( f"bnb_4bit_compute_dtype must be in ['fp32','fp16','bf16'] but found {self.bnb_4bit_compute_dtype}" ) elif not isinstance(self.bnb_4bit_compute_dtype, torch.dtype): raise ValueError("bnb_4bit_compute_dtype must be a string or a torch.dtype") if self.skip_modules is not None and not isinstance(self.skip_modules, list): raise ValueError("skip_modules must be a list of strings") if self.keep_in_fp32_modules is not None and not isinstance(self.keep_in_fp32_modules, list): raise ValueError("keep_in_fp_32_modules must be a list of strings") if self.load_in_4bit: self.target_dtype = "int4" if self.load_in_8bit: self.target_dtype = torch.int8 if self.load_in_4bit and self.llm_int8_threshold != 6.0: warnings.warn("llm_int8_threshold can only be used for model loaded in 8bit") if isinstance(self.torch_dtype, str): if self.torch_dtype == "fp32": self.torch_dtype = torch.float32 elif self.torch_dtype == "fp16": self.torch_dtype = torch.float16 elif self.torch_dtype == "bf16": self.torch_dtype = torch.bfloat16 else: raise ValueError(f"torch_dtype must be in ['fp32','fp16','bf16'] but found {self.torch_dtype}") if self.load_in_8bit and self.torch_dtype is None: self.torch_dtype = torch.float16 if self.load_in_4bit and self.torch_dtype is None: self.torch_dtype = self.bnb_4bit_compute_dtype if not isinstance(self.torch_dtype, torch.dtype): raise ValueError("torch_dtype must be a torch.dtype")