from contextlib import contextmanager from typing import List import torch import torch.distributed as dist from torch import nn from torch._utils import _flatten_dense_tensors, _unflatten_dense_tensors from torch.distributed import ProcessGroup, get_world_size from colossalai.utils.device import get_current_device, get_rng_state, set_rng_state, manual_seed class SeqParallelUtils: @staticmethod def marked_as_sp_partial_derived_param(param): """ Mark a parameter as partially derived in sequence parallelism. Args: param: The parameter to mark as partially derived. """ setattr(param, "partial_derived", True) @staticmethod def is_sp_partial_derived_param(param): """ Check if a parameter is marked as partially derived in sequence parallelism. Args: param: The parameter to check. Returns: bool: True if the parameter is marked as partially derived, False otherwise. """ return getattr(param, "partial_derived", False) @staticmethod def allreduce_partial_data_grad(tp_group: ProcessGroup, model: nn.Module = None, grads: List[torch.Tensor] = None): """ Allreduce partial derived gradients across the specified process group. This function performs gradient synchronization for parameters that are marked as partially derived in sequence parallelism. Args: tp_group (ProcessGroup): The process group for gradient synchronization. model (nn.Module): The model from which gradients will be synchronized. grads (List[torch.Tensor]): The list of gradients to be synchronized. Raises: AssertionError: If both `model` and `grads` are provided or neither is provided. """ # Ensure that exactly one of `model` and `grads` is provided for gradient synchronization. assert (model is not None) ^ (grads is not None), "Exactly one of model and grads must be not None." # Get the size of the process group, which determines whether synchronization is needed. tp_size = get_world_size(tp_group) if tp_group is not None else 1 if tp_size == 1: # If the process group size is 1, no synchronization is required. return if model is not None: # If `model` is provided, extract partial derived gradients from the model's parameters. grads = [] for p in model.parameters(): if p.grad is not None and SeqParallelUtils.is_sp_partial_derived_param(p): grads.append(p.grad.data) # Flatten and reduce the gradients using the specified process group. coalesced = _flatten_dense_tensors(grads) dist.all_reduce(coalesced, op=dist.ReduceOp.SUM, group=tp_group) # Unflatten the synchronized gradients and update the model's gradients. for buf, synced in zip(grads, _unflatten_dense_tensors(coalesced, grads)): buf.copy_(synced) else: # If `grads` are provided explicitly, synchronize those gradients directly. coalesced = _flatten_dense_tensors(grads) dist.all_reduce(coalesced, op=dist.ReduceOp.SUM, group=tp_group) for buf, synced in zip(grads, _unflatten_dense_tensors(coalesced, grads)): buf.copy_(synced) class Randomizer: """ Randomizer enables the program to be executed under a different seed within the context. Example: ```python randomizer = Randomizer(seed=1024) with randomizer.fork(): # do something here with seed 1024 do_something() ``` Args: seed (int): The random seed to set. enable_cpu (bool): fork the CPU RNG state as well. with_index (bool): whether to use the index of the randomizer. """ _INDEX = 0 def __init__(self, seed: int): self.seed = seed # Handle device rng state # 1. get the current rng state # 2. set the seed and store the rng state # 3. recover the original rng state device_original_rng_state = get_rng_state() manual_seed(seed) self.device_rng_state = get_rng_state() set_rng_state(device_original_rng_state) # to the same for cpu rng state cpu_original_rng_state = torch.get_rng_state() torch.manual_seed(seed) self.cpu_rng_state = torch.get_rng_state() torch.set_rng_state(cpu_original_rng_state) def _set_device_rng_state(self, rng_state): set_rng_state(rng_state) def _get_device_rng_state(self): current_state = get_rng_state() return current_state def _set_cpu_rng_state(self, rng_state): torch.set_rng_state(rng_state) def _get_cpu_rng_state(self): current_state = torch.get_rng_state() return current_state @contextmanager def fork_rng(self, enable_cpu: bool = False): """ This is a context manager to change the dropout state and recover the original state. Usage: :: >>> with _seed_manager.dropout_mode(): >>> input = super().forward(input) """ try: current_device_rng_state = self._get_device_rng_state() self._set_device_rng_state(self.device_rng_state) if enable_cpu: current_cpu_rng_state = self._get_cpu_rng_state() self._set_cpu_rng_state(self.cpu_rng_state) yield finally: self.device_rng_state = self._get_device_rng_state() self._set_device_rng_state(current_device_rng_state) if enable_cpu: self.cpu_rng_state = self._get_cpu_rng_state() self._set_cpu_rng_state(current_cpu_rng_state) @staticmethod def index(): """ Return the index of the randomizer. The index is useful when the user wants to introduce some randomness in the program. Note: The index will increment by one each time this method is called. Example: ```python # assume we need a randomizer to init the weight of different layers # we can use the index of the randomizer to do so that # each layer has its own randomizer with a different seed base_seed = torch.random.initial_seed() seed = base_seed + Randomizer.index() randomizer = Randomizer(seed) with randomizer.fork(): init_weights() ``` """ idx = Randomizer._INDEX return idx @staticmethod def increment_index(): """ Increment the index of the randomizer by one. """ Randomizer._INDEX += 1 @staticmethod def reset_index(): """ Reset the index to zero. """ Randomizer._INDEX = 0 @staticmethod def is_randomizer_index_synchronized(process_group: ProcessGroup = None): """ Return whether the randomizer index is synchronized across processes. """ index = Randomizer.index() if dist.is_initialized(): # convert the index to tensor index_tensor = torch.tensor(index, dtype=torch.int32, device=get_current_device()) # all gather the index gathered_index = [torch.zeros_like(index_tensor) for _ in range(dist.get_world_size(process_group))] dist.all_gather(gathered_index, index_tensor, process_group) # make sure all the gathered index are the same for i in range(1, dist.get_world_size(process_group)): if gathered_index[i] != gathered_index[0]: return False return True @staticmethod def synchronize_index(process_group: ProcessGroup = None): """ All gather the index and pick the largest value. """ index = Randomizer.index() if dist.is_initialized(): # convert the index to tensor index_tensor = torch.tensor(index, dtype=torch.int32, device=get_current_device()) # all gather the index gathered_index = [torch.zeros_like(index_tensor) for _ in range(dist.get_world_size(process_group))] dist.all_gather(gathered_index, index_tensor, process_group) # pick the largest index for i in range(1, dist.get_world_size(process_group)): if gathered_index[i] > index_tensor: index_tensor = gathered_index[i] # set the index Randomizer._INDEX = index_tensor.item() def create_randomizer_with_offset( seed: int, process_group: ProcessGroup = None, offset_by_rank: bool = True, offset_by_index: bool = True ): """ Create a randomizer with an offset. The offset is equal to the rank of the process and the index of the randomizer. Args: seed (int): The base random seed to set. process_group (ProcessGroup): the process group to get the rank from. offset_by_rank (bool): whether to offset by the rank of the process, i.e., the rank of the process will be added to the seed. Default: True. offset_by_index (bool): whether to offset by the index of the randomizer, i.e., the index of the randomizer will be added to the seed. Default: True. Returns: Randomizer: the randomizer with offset. """ base_seed = seed if offset_by_rank and dist.is_initialized(): rank = dist.get_rank(process_group) base_seed += rank if offset_by_index: # check if the randomizer index is synchronized is_synchronized = Randomizer.is_randomizer_index_synchronized(process_group) assert is_synchronized, ( "We detect that the randomizer index is not synchronized across processes." "This is not allowed when we want to create a randomizer with offset by index." "Please call Randomizer.synchronize_index() first." ) base_seed += Randomizer.index() Randomizer.increment_index() return Randomizer(seed=base_seed)