import torch import torch.distributed as dist import torch.nn.functional as F try: import fused_mix_prec_layer_norm_cuda except: fused_mix_prec_layer_norm_cuda = None class FusedLayerNormAffineFunction1D(torch.autograd.Function): r"""Layernorm Args: input: input matrix. weight: weight matrix. bias: bias matrix. normalized_shape: input shape from an expected input of size. :math:`[* \times \text{normalized_shape}[0] \times \text{normalized_shape}[1] \times \ldots \times \text{normalized_shape}[-1]]` If a single integer is used, it is treated as a singleton list, and this module will normalize over the last dimension which is expected to be of that specific size. eps: a value added to the denominator for numerical stability """ @staticmethod def forward(ctx, input, weight, bias, normalized_shape, eps): ctx.normalized_shape = normalized_shape ctx.eps = eps input_ = input.contiguous() weight_ = weight.contiguous() bias_ = bias.contiguous() output, mean, invvar = fused_mix_prec_layer_norm_cuda.forward_affine( input_, ctx.normalized_shape, weight_, bias_, ctx.eps ) ctx.save_for_backward(input_, weight_, bias_, mean, invvar) return output @staticmethod def backward(ctx, grad_output): input_, weight_, bias_, mean, invvar = ctx.saved_tensors grad_input = grad_weight = grad_bias = None grad_input, grad_weight, grad_bias = fused_mix_prec_layer_norm_cuda.backward_affine( grad_output.contiguous(), mean, invvar, input_, ctx.normalized_shape, weight_, bias_, ctx.eps ) return grad_input, grad_weight, grad_bias, None, None class MatmulWithAsyncCommunication(torch.autograd.Function): """ Linear layer execution with asynchronous communication in backprop. """ @staticmethod def forward(ctx, input_, weight, bias, process_group, async_grad_allreduce): ctx.save_for_backward(input_, weight, bias) ctx.use_bias = bias is not None ctx.process_group = process_group ctx.async_grad_allreduce = async_grad_allreduce output = torch.matmul(input_, weight) if bias is not None: output = output + bias return output @staticmethod def backward(ctx, grad_output): input, weight, bias = ctx.saved_tensors use_bias = ctx.use_bias # In order to be hooked into Gemini's '__torch_function__', adding a view operation to weight and bias. weight = weight.view(weight.shape) bias = bias.view(bias.shape) total_input = input grad_input = grad_output.matmul(weight.T) grad_output = grad_output.contiguous() # Convert the tensor shapes to 2D for execution compatibility if len(grad_output.shape) > 2: grad_output = grad_output.view(-1, grad_output.shape[-1]) total_input = total_input.view(-1, total_input.shape[-1]) if ctx.async_grad_allreduce: # Asynchronous all-reduce handle = dist.all_reduce(grad_input, group=ctx.process_group, async_op=True) # Delay the start of weight gradient computation shortly (3us) to have # all-reduce scheduled first and have GPU resources allocated _ = torch.empty(1, device=grad_output.device) + 1 grad_weight = total_input.t().matmul(grad_output) grad_bias = grad_output.sum(dim=0) if use_bias else None if ctx.async_grad_allreduce: handle.wait() return grad_input, grad_weight, grad_bias, None, None, None class LinearWithAsyncCommunication(torch.autograd.Function): """ Linear layer execution with asynchronous communication in backprop. """ @staticmethod def forward(ctx, input_, weight, bias, process_group, async_grad_allreduce): ctx.save_for_backward(input_, weight, bias) ctx.use_bias = bias is not None ctx.process_group = process_group ctx.async_grad_allreduce = async_grad_allreduce if bias is not None: output = F.linear(input_, weight, bias) else: output = F.linear(input_, weight) return output @staticmethod def backward(ctx, grad_output): input, weight, bias = ctx.saved_tensors use_bias = ctx.use_bias # In order to be hooked into Gemini's '__torch_function__', adding a view operation to bias. if use_bias: bias.view(bias.shape) total_input = input grad_input = grad_output.matmul(weight) grad_output = grad_output.contiguous() # Convert the tensor shapes to 2D for execution compatibility if len(grad_output.shape) > 2: grad_output = grad_output.view(-1, grad_output.shape[-1]) total_input = total_input.view(-1, total_input.shape[-1]) if ctx.async_grad_allreduce: # Asynchronous all-reduce handle = dist.all_reduce(grad_input, group=ctx.process_group, async_op=True) # Delay the start of weight gradient computation shortly (3us) to have # all-reduce scheduled first and have GPU resources allocated _ = torch.empty(1, device=grad_output.device) + 1 grad_weight = grad_output.t().matmul(total_input) grad_bias = grad_output.sum(dim=0) if use_bias else None if ctx.async_grad_allreduce: handle.wait() return grad_input, grad_weight, grad_bias, None, None, None class _LinearWithGatherForwardReduceScatterBackward(torch.autograd.Function): """Gather input from sequence parallel in forward and reduce-scatter gradient in backward Args: input_ (`torch.Tensor`): The input tensor from sequence parallel region. process_group (`torch.distributed.ProcessGroup`): The process group used for collective communication. overlap (`bool`): Whther to overlap the all_gather op and gradient calculate in backward. """ @staticmethod def forward(ctx, input_, weight, bias, process_group, async_grad_reduce_scatter, dim, overlap=True): ctx.save_for_backward(input_, weight, bias) ctx.use_bias = bias is not None ctx.process_group = process_group ctx.async_grad_reduce_scatter = async_grad_reduce_scatter ctx.dim = dim ctx.overlap = overlap input_parallel = _gather(input_, dim, process_group) if bias is not None: output = F.linear(input_parallel, weight, bias) else: output = F.linear(input_parallel, weight) return output @staticmethod def backward(ctx, grad_output): input_, weight, bias = ctx.saved_tensors use_bias = ctx.use_bias dim = ctx.dim process_group = ctx.process_group overlap = ctx.overlap # In order to be hooked into Gemini's '__torch_function__', adding a view operation to weight and bias. Used in FusedLayerNorm if use_bias: bias = bias.view(bias.shape) if not overlap: input_parallel = _gather(input_, dim, process_group) total_input = input_parallel grad_input = grad_output.matmul(weight) grad_output = grad_output.contiguous() # Convert the tensor shapes to 2D for execution compatibility if len(grad_output.shape) > 2: grad_output = grad_output.view(-1, grad_output.shape[-1]) total_input = total_input.view(-1, total_input.shape[-1]) if ctx.async_grad_reduce_scatter: # Asynchronous reduce-scatter input_list = [ item.contiguous() for item in torch.chunk(grad_input, dist.get_world_size(process_group), dim=dim) ] output = torch.empty( input_.shape, dtype=input_parallel.dtype, device=input_parallel.device ).contiguous() handle = dist.reduce_scatter(output, input_list, group=process_group, async_op=True) # Delay the start of weight gradient computation shortly (3us) to have # reduce-scatter scheduled first and have GPU resources allocated _ = torch.empty(1, device=grad_output.device) + 1 grad_weight = grad_output.t().matmul(total_input) grad_bias = grad_output.sum(dim=0) if use_bias else None if ctx.async_grad_reduce_scatter: handle.wait() else: input_ = input_.contiguous() world_size = dist.get_world_size(process_group) tensor_list = [torch.empty_like(input_) for _ in range(world_size)] # do all gather in is async way gather_handle = dist.all_gather(tensor_list, input_, group=process_group, async_op=True) # calculate gradient and prepare data asynchronously with all-gather # calculate grad_input = grad_output.matmul(weight) grad_output = grad_output.contiguous() # Convert the tensor shapes to 2D for execution compatibility if len(grad_output.shape) > 2: grad_output = grad_output.view(-1, grad_output.shape[-1]) grad_bias = grad_output.sum(dim=0) if use_bias else None # prepare data input_list = [ item.contiguous() for item in torch.chunk(grad_input, dist.get_world_size(process_group), dim=dim) ] output = torch.empty(input_.shape, dtype=input_.dtype, device=input_.device).contiguous() # wait until all-gather finished gather_handle.wait() # do reduce-scatter in async way reducescatter_handle = dist.reduce_scatter(output, input_list, group=process_group, async_op=True) input_parallel = torch.cat(tensor_list, dim=dim).contiguous() # calculate gradient if len(input_parallel.shape) > 2: input_parallel = input_parallel.view(-1, input_parallel.shape[-1]) grad_weight = grad_output.t().matmul(input_parallel) # wait until reduce-scatter finished reducescatter_handle.wait() return output, grad_weight, grad_bias, None, None, None, None class _LinearWithReduceScatterForwardGatherBackward(torch.autograd.Function): """Gather input from sequence parallel in forward and reduce-scatter gradient in backward Args: input_ (`torch.Tensor`): The input tensor from sequence parallel region. process_group (`torch.distributed.ProcessGroup`): The process group used for collective communication. """ @staticmethod def forward(ctx, input_, process_group, dim): ctx.dim = dim ctx.process_group = process_group # do reduce-scatter new_shape = list(input_.shape) assert ( new_shape[dim] % dist.get_world_size(process_group) == 0 ), f"The dimension to split ({new_shape[dim]}) is not a multiple of tensor parallel size ({dist.get_world_size(process_group)}). " new_shape[dim] = new_shape[dim] // dist.get_world_size(process_group) input_list = [item.contiguous() for item in torch.chunk(input_, dist.get_world_size(process_group), dim=dim)] output = torch.empty(new_shape, dtype=input_.dtype, device=input_.device) dist.reduce_scatter(output, input_list, group=process_group) return output @staticmethod def backward(ctx, grad_output): dim = ctx.dim process_group = ctx.process_group return _gather(grad_output, dim, process_group), None, None class _MatmulWithGatherForwardReduceScatterBackward(torch.autograd.Function): """ This class is designed for matmul operation with gather forward and reduce-scatter backward. Args: input_ (`torch.Tensor`): input matrix. dim (int): the dimension to perform split and gather process_group (`torch.distributed.ProcessGroup`): the process group used for collective communication """ @staticmethod def forward(ctx, input_, weight, bias, process_group, async_grad_reduce_scatter, dim, overlap): ctx.save_for_backward(input_, weight, bias) ctx.use_bias = bias is not None ctx.process_group = process_group ctx.async_grad_reduce_scatter = async_grad_reduce_scatter ctx.dim = dim ctx.overlap = overlap input_parallel = _gather(input_, dim, process_group) output = torch.matmul(input_parallel, weight) if bias is not None: output = output + bias return output @staticmethod def backward(ctx, grad_output): input_, weight, bias = ctx.saved_tensors use_bias = ctx.use_bias dim = ctx.dim process_group = ctx.process_group overlap = ctx.overlap # In order to be hooked into Gemini's '__torch_function__', adding a view operation to weight and bias. Used in FusedLayerNorm weight = weight.view(weight.shape) if use_bias: bias = bias.view(bias.shape) if not overlap: input_parallel = _gather(input_, dim, process_group) total_input = input_parallel grad_input = grad_output.matmul(weight.T) grad_output = grad_output.contiguous() # Convert the tensor shapes to 2D for execution compatibility if len(grad_output.shape) > 2: grad_output = grad_output.view(-1, grad_output.shape[-1]) total_input = total_input.view(-1, total_input.shape[-1]) if ctx.async_grad_reduce_scatter: # Asynchronous reduce-scatter input_list = [ item.contiguous() for item in torch.chunk(grad_input, dist.get_world_size(process_group), dim=dim) ] output = torch.empty( input_.shape, dtype=input_parallel.dtype, device=input_parallel.device ).contiguous() handle = dist.reduce_scatter(output, input_list, group=process_group, async_op=True) # Delay the start of weight gradient computation shortly (3us) to have # reduce-scatter scheduled first and have GPU resources allocated _ = torch.empty(1, device=grad_output.device) + 1 grad_weight = total_input.t().matmul(grad_output) grad_bias = grad_output.sum(dim=0) if use_bias else None if ctx.async_grad_reduce_scatter: handle.wait() else: world_size = dist.get_world_size(process_group) tensor_list = [torch.empty_like(input_) for _ in range(world_size)] # do all gather in is async way gather_handle = dist.all_gather(tensor_list, input_, group=process_group, async_op=True) # calculate gradient and prepare data asynchronously with all-gather # calculate grad_input = grad_output.matmul(weight.T) grad_output = grad_output.contiguous() # Convert the tensor shapes to 2D for execution compatibility if len(grad_output.shape) > 2: grad_output = grad_output.view(-1, grad_output.shape[-1]) grad_bias = grad_output.sum(dim=0) if use_bias else None # prepare data input_list = [ item.contiguous() for item in torch.chunk(grad_input, dist.get_world_size(process_group), dim=dim) ] output = torch.empty(input_.shape, dtype=input_.dtype, device=input_.device).contiguous() # wait until all-gather finished gather_handle.wait() # do reduce-scatter in async way reducescatter_handle = dist.reduce_scatter(output, input_list, group=process_group, async_op=True) input_parallel = torch.cat(tensor_list, dim=dim).contiguous() # calculate gradient if len(input_parallel.shape) > 2: input_parallel = input_parallel.view(-1, input_parallel.shape[-1]) grad_weight = input_parallel.t().matmul(grad_output) # wait until reduce-scatter finished reducescatter_handle.wait() return output, grad_weight, grad_bias, None, None, None, None class _SplitForwardGatherBackward(torch.autograd.Function): """ Split the input and keep only the corresponding chuck to the rank. Args: input_ (`torch.Tensor`): input matrix. dim (int): the dimension to perform split and gather process_group (`torch.distributed.ProcessGroup`): the process group used for collective communication """ @staticmethod def forward(ctx, input_, dim, process_group): ctx.process_group = process_group ctx.dim = dim return _split(input_, dim, process_group) @staticmethod def backward(ctx, grad_output): return _gather(grad_output, ctx.dim, ctx.process_group), None, None class _ReduceForward(torch.autograd.Function): """ All-reduce the input from the model parallel region. Args: input_: input matrix. parallel_mode: parallel mode. """ @staticmethod def forward(ctx, input_, process_group): return _reduce(input_, process_group) @staticmethod def backward(ctx, grad_output): return grad_output, None class _ReduceBackward(torch.autograd.Function): """ All-reduce the input from the model parallel region. Args: input_: input matrix. parallel_mode: parallel mode. """ @staticmethod def forward(ctx, input_, process_group): ctx.process_group = process_group return input_ @staticmethod def backward(ctx, grad_output): return _reduce(grad_output, ctx.process_group), None class _GatherForwardSplitBackward(torch.autograd.Function): """Gather the input from model parallel region and concatenate. Args: input_: input matrix. parallel_mode: parallel mode. dim: dimension """ @staticmethod def forward(ctx, input_, dim, process_group): ctx.process_group = process_group ctx.dim = dim return _gather(input_, dim, process_group) @staticmethod def backward(ctx, grad_output): return _split(grad_output, ctx.dim, ctx.process_group), None, None class HookParameter(torch.autograd.Function): """In order to be hooked into Gemini's '__torch_function__', adding a view operation to weight and bias. Used in FusedLayerNorm""" @staticmethod def forward(ctx, input, weight, bias): ctx.save_for_backward(weight, bias) output = input return output @staticmethod def backward(ctx, grad_output): weight, bias = ctx.saved_tensors if weight is not None: weight = weight.view(weight.shape) if bias is not None: bias = bias.view(bias.shape) return grad_output, None, None def hook_paramter_in_backward(input, weight=None, bias=None): return HookParameter.apply(input, weight, bias) def _reduce(input_, process_group): # skip if only one rank involved if dist.get_world_size(process_group) == 1: return input_ else: dist.all_reduce(input_, group=process_group) return input_ def _split(input_, dim=-1, process_group=None): # skip if only one rank involved world_size = dist.get_world_size(process_group) if world_size == 1: return input_ # Split along last dimension. dim_size = input_.size(dim) assert dim_size % world_size == 0, ( f"The dimension to split ({dim_size}) is not a multiple of world size ({world_size}), " f"cannot split tensor evenly" ) tensor_list = torch.split(input_, dim_size // world_size, dim=dim) rank = dist.get_rank(process_group) output = tensor_list[rank].clone().contiguous() return output def _gather(input_, dim=-1, process_group=None): # skip if only one rank involved world_size = dist.get_world_size(process_group) if world_size == 1: return input_ # all gather input_ = input_.contiguous() tensor_list = [torch.empty_like(input_) for _ in range(world_size)] torch.distributed.all_gather(tensor_list, input_, group=process_group) # concat output = torch.cat(tensor_list, dim=dim).contiguous() return output def _reduce_scatter(input_, dim=1, process_group=None): """Do reduce-scatter operation. Args: input_ (`torch.Tensor`): The input tensor from sequence parallel region. dim (int): The dimension to perform reduce-scatter. process_group (`torch.distributed.ProcessGroup`): The process group used for collective communication. """ world_size = dist.get_world_size(process_group) if world_size == 1: return input_ # reduce-scatter new_shape = list(input_.shape) assert ( new_shape[dim] % dist.get_world_size(process_group) == 0 ), f"The dimension to split ({new_shape[dim]}) is not a multiple of tensor parallel size ({dist.get_world_size(process_group)}). " new_shape[dim] = new_shape[dim] // world_size output = torch.empty(new_shape, dtype=input_.dtype, device=input_.device) dist.reduce_scatter(output, input_, group=process_group) return output def matmul_with_async_comm(input_, weight, bias, process_group, async_grad_allreduce): return MatmulWithAsyncCommunication.apply(input_, weight, bias, process_group, async_grad_allreduce) def linear_with_async_comm(input_, weight, bias, process_group, async_grad_allreduce): return LinearWithAsyncCommunication.apply(input_, weight, bias, process_group, async_grad_allreduce) def linear_gather_forward_reducescatter_backward( input_, weight, bias, process_group, async_grad_reduce_scatter, dim, overlap ): return _LinearWithGatherForwardReduceScatterBackward.apply( input_, weight, bias, process_group, async_grad_reduce_scatter, dim, overlap ) def linear_reducescatter_forward_gather_backward(input_, process_group, dim): return _LinearWithReduceScatterForwardGatherBackward.apply(input_, process_group, dim) def matmul_gather_forward_reducescatter_backward( input_, weight, bias, process_group, async_grad_reduce_scatter, dim, overlap ): return _MatmulWithGatherForwardReduceScatterBackward.apply( input_, weight, bias, process_group, async_grad_reduce_scatter, dim, overlap ) def gather_forward_split_backward(input_, dim, process_group): return _GatherForwardSplitBackward.apply(input_, dim, process_group) def split_forward_gather_backward(input_, dim, process_group): return _SplitForwardGatherBackward.apply(input_, dim, process_group) def reduce_forward(input_, process_group): return _ReduceForward.apply(input_, process_group) def reduce_backward(input_, process_group): return _ReduceBackward.apply(input_, process_group)