import json from pathlib import Path from typing import Dict import torch from datasets import load_dataset from einops import rearrange from ldm.util import instantiate_from_config from omegaconf import DictConfig, ListConfig from PIL import Image from torch.utils.data import Dataset from torchvision import transforms def make_multi_folder_data(paths, caption_files=None, **kwargs): """Make a concat dataset from multiple folders Don't suport captions yet If paths is a list, that's ok, if it's a Dict interpret it as: k=folder v=n_times to repeat that """ list_of_paths = [] if isinstance(paths, (Dict, DictConfig)): assert caption_files is None, "Caption files not yet supported for repeats" for folder_path, repeats in paths.items(): list_of_paths.extend([folder_path] * repeats) paths = list_of_paths if caption_files is not None: datasets = [FolderData(p, caption_file=c, **kwargs) for (p, c) in zip(paths, caption_files)] else: datasets = [FolderData(p, **kwargs) for p in paths] return torch.utils.data.ConcatDataset(datasets) class FolderData(Dataset): def __init__( self, root_dir, caption_file=None, image_transforms=[], ext="jpg", default_caption="", postprocess=None, return_paths=False, ) -> None: """Create a dataset from a folder of images. If you pass in a root directory it will be searched for images ending in ext (ext can be a list) """ self.root_dir = Path(root_dir) self.default_caption = default_caption self.return_paths = return_paths if isinstance(postprocess, DictConfig): postprocess = instantiate_from_config(postprocess) self.postprocess = postprocess if caption_file is not None: with open(caption_file, "rt") as f: ext = Path(caption_file).suffix.lower() if ext == ".json": captions = json.load(f) elif ext == ".jsonl": lines = f.readlines() lines = [json.loads(x) for x in lines] captions = {x["file_name"]: x["text"].strip("\n") for x in lines} else: raise ValueError(f"Unrecognised format: {ext}") self.captions = captions else: self.captions = None if not isinstance(ext, (tuple, list, ListConfig)): ext = [ext] # Only used if there is no caption file self.paths = [] for e in ext: self.paths.extend(list(self.root_dir.rglob(f"*.{e}"))) if isinstance(image_transforms, ListConfig): image_transforms = [instantiate_from_config(tt) for tt in image_transforms] image_transforms.extend( [transforms.ToTensor(), transforms.Lambda(lambda x: rearrange(x * 2.0 - 1.0, "c h w -> h w c"))] ) image_transforms = transforms.Compose(image_transforms) self.tform = image_transforms def __len__(self): if self.captions is not None: return len(self.captions.keys()) else: return len(self.paths) def __getitem__(self, index): data = {} if self.captions is not None: chosen = list(self.captions.keys())[index] caption = self.captions.get(chosen, None) if caption is None: caption = self.default_caption filename = self.root_dir / chosen else: filename = self.paths[index] if self.return_paths: data["path"] = str(filename) im = Image.open(filename) im = self.process_im(im) data["image"] = im if self.captions is not None: data["txt"] = caption else: data["txt"] = self.default_caption if self.postprocess is not None: data = self.postprocess(data) return data def process_im(self, im): im = im.convert("RGB") return self.tform(im) def hf_dataset( name, image_transforms=[], image_column="img", label_column="label", text_column="txt", split="train", image_key="image", caption_key="txt", ): """Make huggingface dataset with appropriate list of transforms applied""" ds = load_dataset(name, split=split) image_transforms = [instantiate_from_config(tt) for tt in image_transforms] image_transforms.extend( [transforms.ToTensor(), transforms.Lambda(lambda x: rearrange(x * 2.0 - 1.0, "c h w -> h w c"))] ) tform = transforms.Compose(image_transforms) assert image_column in ds.column_names, f"Didn't find column {image_column} in {ds.column_names}" assert label_column in ds.column_names, f"Didn't find column {label_column} in {ds.column_names}" def pre_process(examples): processed = {} processed[image_key] = [tform(im) for im in examples[image_column]] label_to_text_dict = { 0: "airplane", 1: "automobile", 2: "bird", 3: "cat", 4: "deer", 5: "dog", 6: "frog", 7: "horse", 8: "ship", 9: "truck", } processed[caption_key] = [label_to_text_dict[label] for label in examples[label_column]] return processed ds.set_transform(pre_process) return ds class TextOnly(Dataset): def __init__(self, captions, output_size, image_key="image", caption_key="txt", n_gpus=1): """Returns only captions with dummy images""" self.output_size = output_size self.image_key = image_key self.caption_key = caption_key if isinstance(captions, Path): self.captions = self._load_caption_file(captions) else: self.captions = captions if n_gpus > 1: # hack to make sure that all the captions appear on each gpu repeated = [n_gpus * [x] for x in self.captions] self.captions = [] [self.captions.extend(x) for x in repeated] def __len__(self): return len(self.captions) def __getitem__(self, index): dummy_im = torch.zeros(3, self.output_size, self.output_size) dummy_im = rearrange(dummy_im * 2.0 - 1.0, "c h w -> h w c") return {self.image_key: dummy_im, self.caption_key: self.captions[index]} def _load_caption_file(self, filename): with open(filename, "rt") as f: captions = f.readlines() return [x.strip("\n") for x in captions]