import torch try: import triton import triton.language as tl HAS_TRITON = True except ImportError: HAS_TRITON = False print("please install triton from https://github.com/openai/triton") if HAS_TRITON: ''' softmax kernel is modified based on https://github.com/openai/triton/blob/34817ecc954a6f4ca7b4dfb352fdde1f8bd49ca5/python/tutorials/02-fused-softmax.py ''' @triton.jit def softmax_kernel(output_ptr, input_ptr, row_stride, n_cols, mask_ptr, BLOCK_SIZE: tl.constexpr): r""" the kernel function for implementing softmax operator Args: output_ptr: the output after finishing softmax operation, (N, hidden_dim) input_ptr: the tensor of input, shape should be (N, hidden_dim) n_cols(tl.constexpr): the number of cols of input BLOCK_SIZE(tl.constexpr): the block_size of your hidden_dim dimension, typically BLOCK_SIZE >= hidden_dim """ row_idx = tl.program_id(0) row_start_ptr = input_ptr + row_idx * row_stride col_offsets = tl.arange(0, BLOCK_SIZE) input_ptrs = row_start_ptr + col_offsets row = tl.load(input_ptrs, mask=col_offsets < n_cols, other=-float('inf')).to(tl.float32) row_minus_max = row - tl.max(row, axis=0) if mask_ptr is not None: # load mask into SRAM mask_ptrs = (mask_ptr + (row_indx * row_stride)) + col_offsets mask = tl.load(mask_ptrs, mask=col_offsets < n_cols, other=0).to(tl.float32) # update row_minus_max = row_minus_max + mask numerator = tl.exp(row_minus_max) denominator = tl.sum(numerator, axis=0) softmax_output = numerator / denominator output_row_start_ptr = output_ptr + row_idx * row_stride output_ptrs = output_row_start_ptr + col_offsets # Write back output to DRAM tl.store(output_ptrs, softmax_output, mask=col_offsets < n_cols) def softmax(input: torch.Tensor, mask: torch.Tensor = None, dim=-1) -> torch.Tensor: if mask is not None: assert input[-1] == mask[-1], "the last dimentions should be the same for input and mask" assert dim == -1 or dim == len(input.shape)-1, "currently softmax layer only support last dimention" hidden_dim = input.shape[-1] output = torch.empty_like(input) input = input.view(-1, hidden_dim) if mask is not None: mask = mask.view(-1, hidden_dim) assert input.shape[0] == mask.shape[0], "the fist dimention of mask and input should be the same" num_rows, num_cols = input.shape block_size = max(triton.next_power_of_2(num_cols), 2) num_warps = 16 if block_size >= 4096: num_warps = 16 elif block_size >= 2048: num_warps = 8 else: num_warps = 4 if num_rows <= 350000: grid = (num_rows,) softmax_kernel[grid](output, input, input.stride(0), num_cols, mask, BLOCK_SIZE = block_size, num_warps=num_warps) else: grid = lambda meta: () grid = lambda meta: ( triton.cdiv(num_rows, meta["BLOCK_M"]), ) BLOCK_M = 32 if block_size >= 4096: BLOCK_M = 4 elif block_size >= 2048: BLOCK_M = 8 softmax_kernel[grid](output_ptr = output, input_ptr = input, row_stride = input.stride(0), n_rows = num_rows, n_cols = num_cols, mask_ptr = mask, # currently manually setting up size BLOCK_M = 32, BLOCK_SIZE = block_size) return output