import collections import math from itertools import repeat import torch from ...registry import meta_patched_function def _ntuple(n, name="parse"): def parse(x): if isinstance(x, collections.abc.Iterable): return tuple(x) return tuple(repeat(x, n)) parse.__name__ = name return parse _single = _ntuple(1, "_single") _pair = _ntuple(2, "_pair") _triple = _ntuple(3, "_triple") def _extract_kwargs(kwargs): if 'stride' in kwargs: stride = kwargs['stride'] else: stride = 1 # TODO: process str type padding if 'padding' in kwargs: padding = kwargs['padding'] else: padding = 0 if 'dilation' in kwargs: dilation = kwargs['dilation'] else: dilation = 1 if 'output_padding' in kwargs: output_padding = kwargs['output_padding'] else: output_padding = 0 return stride, padding, dilation, output_padding @meta_patched_function.register(torch.nn.functional.conv1d) def torch_nn_functional_conv1d(input, weight, **kwargs): stride, padding, dilation, _ = _extract_kwargs(kwargs) stride = _single(stride) padding = _single(padding) dilation = _single(dilation) kernel_size = weight.shape[2:] l_in = input.shape[-1] c_out = weight.shape[0] l_out = math.floor((l_in + 2 * padding[0] - dilation[0] * (kernel_size[0] - 1) - 1) / stride[0] + 1) result_shape = input.shape[:-2] + ( c_out, l_out, ) return torch.empty(result_shape, device='meta') @meta_patched_function.register(torch.nn.functional.conv2d) def torch_nn_functional_conv2d(input, weight, **kwargs): stride, padding, dilation, _ = _extract_kwargs(kwargs) stride = _pair(stride) padding = _pair(padding) dilation = _pair(dilation) kernel_size = weight.shape[2:] h_in, w_in = input.shape[-2:] c_out = weight.shape[0] h_out = math.floor((h_in + 2 * padding[0] - dilation[0] * (kernel_size[0] - 1) - 1) / stride[0] + 1) w_out = math.floor((w_in + 2 * padding[1] - dilation[1] * (kernel_size[1] - 1) - 1) / stride[1] + 1) result_shape = input.shape[:-3] + ( c_out, h_out, w_out, ) return torch.empty(result_shape, device='meta') @meta_patched_function.register(torch.nn.functional.conv3d) def torch_nn_functional_conv3d(input, weight, **kwargs): stride, padding, dilation, _ = _extract_kwargs(kwargs) stride = _triple(stride) padding = _triple(padding) dilation = _triple(dilation) kernel_size = weight.shape[2:] d_in, h_in, w_in = input.shape[-3:] c_out = weight.shape[0] d_out = math.floor((d_in + 2 * padding[0] - dilation[0] * (kernel_size[0] - 1) - 1) / stride[0] + 1) h_out = math.floor((h_in + 2 * padding[1] - dilation[1] * (kernel_size[1] - 1) - 1) / stride[1] + 1) w_out = math.floor((w_in + 2 * padding[2] - dilation[2] * (kernel_size[2] - 1) - 1) / stride[2] + 1) result_shape = input.shape[:-4] + ( c_out, d_out, h_out, w_out, ) return torch.empty(result_shape, device='meta') @meta_patched_function.register(torch.nn.functional.conv_transpose1d) def torch_nn_functional_convtranspose1d(input, weight, **kwargs): stride, padding, dilation, output_padding = _extract_kwargs(kwargs) stride = _single(stride) padding = _single(padding) dilation = _single(dilation) output_padding = _single(output_padding) kernel_size = weight.shape[2:] l_in = input.shape[-1] c_out = weight.shape[1] l_out = math.floor((l_in - 1) * stride[0] - 2 * padding[0] + dilation[0] * (kernel_size[0] - 1) + output_padding[0] + 1) result_shape = input.shape[:-2] + ( c_out, l_out, ) return torch.empty(result_shape, device='meta') @meta_patched_function.register(torch.nn.functional.conv_transpose2d) def torch_nn_functional_convtranspose2d(input, weight, **kwargs): stride, padding, dilation, output_padding = _extract_kwargs(kwargs) stride = _pair(stride) padding = _pair(padding) dilation = _pair(dilation) output_padding = _pair(output_padding) kernel_size = weight.shape[2:] h_in, w_in = input.shape[-2:] c_out = weight.shape[1] h_out = math.floor((h_in - 1) * stride[0] - 2 * padding[0] + dilation[0] * (kernel_size[0] - 1) + output_padding[0] + 1) w_out = math.floor((w_in - 1) * stride[1] - 2 * padding[1] + dilation[1] * (kernel_size[1] - 1) + output_padding[1] + 1) result_shape = input.shape[:-3] + ( c_out, h_out, w_out, ) return torch.empty(result_shape, device='meta') @meta_patched_function.register(torch.nn.functional.conv_transpose3d) def torch_nn_functional_convtranspose3d(input, weight, **kwargs): stride, padding, dilation, output_padding = _extract_kwargs(kwargs) stride = _triple(stride) padding = _triple(padding) dilation = _triple(dilation) output_padding = _triple(output_padding) kernel_size = weight.shape[2:] d_in, h_in, w_in = input.shape[-3:] c_out = weight.shape[1] d_out = math.floor((d_in - 1) * stride[0] - 2 * padding[0] + dilation[0] * (kernel_size[0] - 1) + output_padding[0] + 1) h_out = math.floor((h_in - 1) * stride[1] - 2 * padding[1] + dilation[1] * (kernel_size[1] - 1) + output_padding[1] + 1) w_out = math.floor((w_in - 1) * stride[2] - 2 * padding[2] + dilation[2] * (kernel_size[2] - 1) + output_padding[2] + 1) result_shape = input.shape[:-4] + ( c_out, d_out, h_out, w_out, ) return torch.empty(result_shape, device='meta')