#!/usr/bin/env python # -*- encoding: utf-8 -*- from functools import partial from pathlib import Path import pytest import torch import torch.multiprocessing as mp from colossalai import launch from colossalai.context.parallel_mode import ParallelMode from colossalai.core import global_context as gpc from colossalai.utils import free_port CONFIG_PATH = Path(__file__).parent.joinpath('configs/parallel_2d_init.py').absolute() def check_data_parallel_rank(rank): if rank in [0, 1, 2, 3, 4, 5, 6, 7]: assert gpc.get_local_rank(ParallelMode.DATA) == 0 elif rank in [8, 9, 10, 11, 12, 13, 14, 15]: assert gpc.get_local_rank(ParallelMode.DATA) == 1 def check_pipeline_parallel_rank(rank): if rank in [0, 1, 2, 3]: assert gpc.get_local_rank(ParallelMode.PIPELINE) == 0 elif rank in [4, 5, 6, 7]: assert gpc.get_local_rank(ParallelMode.PIPELINE) == 1 elif rank in [8, 9, 10, 11]: assert gpc.get_local_rank(ParallelMode.PIPELINE) == 0 elif rank in [12, 13, 14, 15]: assert gpc.get_local_rank(ParallelMode.PIPELINE) == 1 def check_model_parallel_rank(rank): for i in range(8): if rank in [i, i+8]: assert gpc.get_local_rank(ParallelMode.MODEL) == i def check_tensor_parallel_rank(rank): if rank in [0, 4, 8, 12]: assert gpc.get_local_rank(ParallelMode.TENSOR) == 0 elif rank in [1, 5, 9, 13]: assert gpc.get_local_rank(ParallelMode.TENSOR) == 1 elif rank in [2, 6, 10, 14]: assert gpc.get_local_rank(ParallelMode.TENSOR) == 2 elif rank in [3, 7, 11, 15]: assert gpc.get_local_rank(ParallelMode.TENSOR) == 3 def check_2d_parallel_rank(rank): if rank in [0, 4, 8, 12]: assert gpc.get_local_rank(ParallelMode.PARALLEL_2D_COL) == 0 assert gpc.get_local_rank(ParallelMode.PARALLEL_2D_ROW) == 0 elif rank in [1, 5, 9, 13]: assert gpc.get_local_rank(ParallelMode.PARALLEL_2D_COL) == 0 assert gpc.get_local_rank(ParallelMode.PARALLEL_2D_ROW) == 1 elif rank in [2, 6, 10, 14]: assert gpc.get_local_rank(ParallelMode.PARALLEL_2D_COL) == 1 assert gpc.get_local_rank(ParallelMode.PARALLEL_2D_ROW) == 0 elif rank in [3, 7, 11, 15]: assert gpc.get_local_rank(ParallelMode.PARALLEL_2D_COL) == 1 assert gpc.get_local_rank(ParallelMode.PARALLEL_2D_ROW) == 1 def init_2d(rank, world_size, backend, port, host): dist_args = dict( config=CONFIG_PATH, rank=rank, world_size=world_size, backend=backend, port=port, host=host, verbose=True ) launch(**dist_args) check_tensor_parallel_rank(rank) check_data_parallel_rank(rank) check_2d_parallel_rank(rank) check_pipeline_parallel_rank(rank) check_model_parallel_rank(rank) gpc.destroy() torch.cuda.empty_cache() @pytest.mark.cpu def test_2d_init(): """ As no computation or communication is done, we can run this test on CPU. """ world_size = 16 test_fn = partial(init_2d, world_size=world_size, backend='gloo', port=free_port(), host='localhost' ) mp.spawn(test_fn, nprocs=world_size) if __name__ == '__main__': test_2d_init()