#!/usr/bin/env python # -*- encoding: utf-8 -*- import os import pytest import torch import torch.multiprocessing as mp from pathlib import Path import colossalai from colossalai.core import global_context as gpc from colossalai.utils import get_dataloader from torchvision import transforms from torchvision.models import resnet18 from torchvision.datasets import CIFAR10 from functools import partial BATCH_SIZE = 16 IMG_SIZE = 224 CONFIG = dict( fp16=dict( mode=None, ), zero=dict( level=3, verbose=False, offload_optimizer_config=dict( device='cpu', pin_memory=True, buffer_count=5, fast_init=False ), offload_param_config=dict( device='cpu', pin_memory=True, buffer_count=5, buffer_size=1e8, max_in_cpu=1e9 ) ), parallel=dict( pipeline=dict(size=1), tensor=dict(size=1, mode=None) ) ) def run_dist(rank, world_size): colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=29941, backend='nccl') # build model model = resnet18(num_classes=10) # build dataloader# build dataloaders train_dataset = CIFAR10( root=Path(os.environ['DATA']), download=True, transform=transforms.Compose( [ transforms.Resize(size=(IMG_SIZE, IMG_SIZE)), transforms.ToTensor(), transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)) ] ) ) train_dataloader = get_dataloader(dataset=train_dataset, shuffle=True, batch_size=BATCH_SIZE, pin_memory=True, drop_last=True) # build optimizer and loss # optimizer = build_optimizer(global_context.config.optimizer, model) optimizer = torch.optim.Adam(model.parameters(), lr=0.001) criterion = torch.nn.CrossEntropyLoss() engine, train_dataloader, *args = colossalai.initialize(model=model, optimizer=optimizer, criterion=criterion, train_dataloader=train_dataloader) # train model.train() for idx, (data, label) in enumerate(train_dataloader): engine.zero_grad() data = data.cuda().half() label = label.cuda() output = engine(data).float() loss = engine.criterion(output, label) engine.backward(loss) engine.step() break gpc.destroy() torch.cuda.empty_cache() @pytest.mark.dist @pytest.mark.skip("Level 3 has unknown bug so skip this test for now") def test_zero_level_3(): world_size = 4 run_func = partial(run_dist, world_size=world_size) mp.spawn(run_func, nprocs=world_size) if __name__ == '__main__': test_zero_level_3()