#!/usr/bin/env python # -*- encoding: utf-8 -*- import os from functools import partial from pathlib import Path import pytest import torch import torch.distributed as dist import torch.multiprocessing as mp from torchvision import transforms from torch.utils.data import DataLoader import colossalai from colossalai.builder import build_dataset, build_transform from colossalai.context import ParallelMode, Config from colossalai.core import global_context as gpc CONFIG = Config( dict( train_data=dict( dataset=dict( type='CIFAR10', root=Path(os.environ['DATA']), train=True, download=True, ), dataloader=dict( num_workers=2, batch_size=2, shuffle=True ), transform_pipeline=[ dict(type='ToTensor'), dict(type='RandomCrop', size=32), dict(type='Normalize', mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)) ] ), parallel=dict( pipeline=dict(size=1), tensor=dict(size=1, mode=None), ), seed=1024, ) ) def run_data_sampler(rank, world_size): dist_args = dict( config=CONFIG, rank=rank, world_size=world_size, backend='gloo', port='29904', host='localhost' ) colossalai.launch(**dist_args) dataset_cfg = gpc.config.train_data.dataset dataloader_cfg = gpc.config.train_data.dataloader transform_cfg = gpc.config.train_data.transform_pipeline # build transform transform_pipeline = [build_transform(cfg) for cfg in transform_cfg] transform_pipeline = transforms.Compose(transform_pipeline) dataset_cfg['transform'] = transform_pipeline # build dataset dataset = build_dataset(dataset_cfg) # build dataloader dataloader = DataLoader(dataset=dataset, **dataloader_cfg) data_iter = iter(dataloader) img, label = data_iter.next() img = img[0] if gpc.get_local_rank(ParallelMode.DATA) != 0: img_to_compare = img.clone() else: img_to_compare = img dist.broadcast(img_to_compare, src=0, group=gpc.get_group(ParallelMode.DATA)) if gpc.get_local_rank(ParallelMode.DATA) != 0: # this is without sampler # this should be false if data parallel sampler to given to the dataloader assert torch.equal(img, img_to_compare), 'Same image was distributed across ranks and expected it to be the same' torch.cuda.empty_cache() @pytest.mark.cpu def test_data_sampler(): world_size = 4 test_func = partial(run_data_sampler, world_size=world_size) mp.spawn(test_func, nprocs=world_size) if __name__ == '__main__': test_data_sampler()