#!/usr/bin/env python # -*- encoding: utf-8 -*- from functools import partial from pathlib import Path import pytest import torch import torch.multiprocessing as mp from colossalai.context.parallel_mode import ParallelMode from colossalai.core import global_context as gpc from colossalai.initialize import launch CONFIG_PATH = Path(__file__).parent.joinpath('configs/parallel_3d_init.py').absolute() def check_data_parallel_rank(rank): dp_rank = gpc.get_local_rank(ParallelMode.DATA) if rank in list(range(16)): assert dp_rank == 0 elif rank in list(range(16, 32)): assert dp_rank == 1 def check_pipeline_parallel_rank(rank): ppr = gpc.get_local_rank(ParallelMode.PIPELINE) if rank in list(range(8)): assert ppr == 0 elif rank in list(range(8, 16)): assert ppr == 1 elif rank in list(range(16, 24)): assert ppr == 0 elif rank in list(range(24, 32)): assert ppr == 1 def check_tensor_parallel_rank(rank): tp_rank = gpc.get_local_rank(ParallelMode.TENSOR) for i in range(8): ranks = list(range(i, 32, 8)) if rank in ranks: assert tp_rank == i def check_3d_parallel_rank(rank): ip_rank = gpc.get_local_rank(ParallelMode.PARALLEL_3D_INPUT) wp_rank = gpc.get_local_rank(ParallelMode.PARALLEL_3D_WEIGHT) op_rank = gpc.get_local_rank(ParallelMode.PARALLEL_3D_OUTPUT) # check for input parallel group for i in range(2): _ranks = list(range(i * 2, 32, 4)) _ranks_plus_one = [val + 1 for val in _ranks] input_ranks = _ranks + _ranks_plus_one if rank in input_ranks: assert ip_rank == i # check for weight parallel group for i in range(2): ranks = list(range(i, 32, 2)) if rank in ranks: assert wp_rank == i # check for output parallel group for i in range(2): ranks = [] for j in range(i * 4, 32, 8): ranks.extend([j + k for k in range(4)]) if rank in ranks: assert op_rank == i def init_3d(rank, world_size, backend, port, host): dist_args = dict( config=CONFIG_PATH, rank=rank, world_size=world_size, backend=backend, port=port, host=host, verbose=True ) launch(**dist_args) check_tensor_parallel_rank(rank) check_3d_parallel_rank(rank) check_data_parallel_rank(rank) check_pipeline_parallel_rank(rank) gpc.destroy() torch.cuda.empty_cache() @pytest.mark.cpu def test_3d_init(): """ As no computation or communication is done, we can run this test on CPU. """ world_size = 32 test_fn = partial(init_3d, world_size=world_size, backend='gloo', port='29902', host='localhost' ) mp.spawn(test_fn, nprocs=world_size) if __name__ == '__main__': test_3d_init()