#include #include #include #include // Another possibility: // #include #include // Stringstream is a big hammer, but I want to rely on operator<< for dtype. #include #include "type_shim.h" #include "multi_tensor_apply.cuh" #define BLOCK_SIZE 512 #define ILP 4 template __device__ __forceinline__ bool is_aligned(T* p){ return ((uint64_t)p) % (ILP*sizeof(T)) == 0; } template __device__ __forceinline__ void load_store(T* dst, T* src, int dst_offset, int src_offset){ typedef typename std::aligned_storage::type LT; ((LT*)dst)[dst_offset] = ((LT*)src)[src_offset]; } template struct ScaleFunctor { __device__ __forceinline__ void operator()( int chunk_size, volatile int* noop_gmem, TensorListMetadata<2>& tl, float scale) { // I'd like this kernel to propagate infs/nans. // if(*noop_gmem == 1) // return; int tensor_loc = tl.block_to_tensor[blockIdx.x]; int chunk_idx = tl.block_to_chunk[blockIdx.x]; int n = tl.sizes[tensor_loc]; in_t* in = (in_t*)tl.addresses[0][tensor_loc]; in += chunk_idx*chunk_size; out_t* out = (out_t*)tl.addresses[1][tensor_loc]; out += chunk_idx*chunk_size; n -= chunk_idx*chunk_size; bool finite = true; in_t r_in[ILP]; out_t r_out[ILP]; // to make things simple, we put aligned case in a different code path if(n % ILP == 0 && chunk_size % ILP == 0 && is_aligned(in) && is_aligned(out)) { for(int i_start = threadIdx.x; i_start*ILP < n && i_start*ILP < chunk_size; i_start += blockDim.x) { // load load_store(r_in, in, 0 , i_start); #pragma unroll for(int ii = 0; ii < ILP; ii++) { r_out[ii] = static_cast(r_in[ii]) * scale; finite = finite && isfinite(r_in[ii]); } // store load_store(out, r_out, i_start, 0); } } else { // Non-divergent exit condition for __syncthreads, not necessary here for(int i_start = 0; i_start < n && i_start < chunk_size; i_start += blockDim.x*ILP) { #pragma unroll for(int ii = 0; ii < ILP; ii++) { r_in[ii] = 0; int i = i_start + threadIdx.x + ii*blockDim.x; if(i < n && i < chunk_size) r_in[ii] = in[i]; } // note for clarification to future michael: // From a pure memory dependency perspective, there's likely no point unrolling // the write loop, since writes just fire off once their LDGs arrive. // Put another way, the STGs are dependent on the LDGs, but not on each other. // There is still compute ILP benefit from unrolling the loop though. #pragma unroll for(int ii = 0; ii < ILP; ii++) { r_out[ii] = static_cast(r_in[ii]) * scale; finite = finite && isfinite(r_in[ii]); } #pragma unroll for(int ii = 0; ii < ILP; ii++) { int i = i_start + threadIdx.x + ii*blockDim.x; if(i < n && i < chunk_size) out[i] = r_out[ii]; } } } if(!finite) *noop_gmem = 1; // Blindly fire off a write. These will race but that's ok. } }; void multi_tensor_scale_cuda( int chunk_size, at::Tensor noop_flag, std::vector> tensor_lists, float scale) { using namespace at; // The output (downscaled) type is always float. // If build times suffer, think about where to put this dispatch, // and what logic should be moved out of multi_tensor_apply. DISPATCH_FLOAT_AND_HALF(tensor_lists[0][0].scalar_type(), 0, "multi_tensor_scale_cuda", DISPATCH_FLOAT_AND_HALF(tensor_lists[1][0].scalar_type(), 1, "multi_tensor_scale_cuda", multi_tensor_apply<2>( BLOCK_SIZE, chunk_size, noop_flag, tensor_lists, ScaleFunctor(), scale); )) AT_CUDA_CHECK(cudaGetLastError()); // AT_CUDA_CHECK(cudaDeviceSynchronize()); }