// modified from https://github.com/NVIDIA/apex/blob/master/csrc/multi_tensor_adam.cu #include #include #include #include // Another possibility: // #include #include #include "type_shim.h" #include "multi_tensor_apply.cuh" #define BLOCK_SIZE 512 #define ILP 4 typedef enum { ADAM_MODE_0 = 0, // L2 regularization mode ADAM_MODE_1 = 1 // Decoupled weight decay mode(AdamW) } adamMode_t; using MATH_T = float; template struct AdamFunctor { __device__ __forceinline__ void operator()( int chunk_size, volatile int *noop_gmem, TensorListMetadata<4> &tl, const float beta1, const float beta2, const float beta1_correction, const float beta2_correction, const float epsilon, const float lr, adamMode_t mode, const float decay) { // I'd like this kernel to propagate infs/nans. // if(*noop_gmem == 1) // return; int tensor_loc = tl.block_to_tensor[blockIdx.x]; // potentially use to pass in list of scalar // int tensor_num = tl.start_tensor_this_launch + tensor_loc; int chunk_idx = tl.block_to_chunk[blockIdx.x]; int n = tl.sizes[tensor_loc]; T *g = (T *)tl.addresses[0][tensor_loc]; g += chunk_idx * chunk_size; T *p = (T *)tl.addresses[1][tensor_loc]; p += chunk_idx * chunk_size; T *m = (T *)tl.addresses[2][tensor_loc]; m += chunk_idx * chunk_size; T *v = (T *)tl.addresses[3][tensor_loc]; v += chunk_idx * chunk_size; n -= chunk_idx * chunk_size; // see note in multi_tensor_scale_kernel.cu for (int i_start = 0; i_start < n && i_start < chunk_size; i_start += blockDim.x * ILP) { MATH_T r_g[ILP]; MATH_T r_p[ILP]; MATH_T r_m[ILP]; MATH_T r_v[ILP]; #pragma unroll for (int ii = 0; ii < ILP; ii++) { int i = i_start + threadIdx.x + ii * blockDim.x; if (i < n && i < chunk_size) { r_g[ii] = g[i]; r_p[ii] = p[i]; r_m[ii] = m[i]; r_v[ii] = v[i]; } else { r_g[ii] = MATH_T(0); r_p[ii] = MATH_T(0); r_m[ii] = MATH_T(0); r_v[ii] = MATH_T(0); } } #pragma unroll for (int ii = 0; ii < ILP; ii++) { if (mode == ADAM_MODE_0) { // L2 r_g[ii] = r_g[ii] + (decay * r_p[ii]); r_m[ii] = beta1 * r_m[ii] + (1 - beta1) * r_g[ii]; r_v[ii] = beta2 * r_v[ii] + (1 - beta2) * r_g[ii] * r_g[ii]; MATH_T next_m_unbiased = r_m[ii] / beta1_correction; MATH_T next_v_unbiased = r_v[ii] / beta2_correction; MATH_T denom = sqrtf(next_v_unbiased) + epsilon; MATH_T update = next_m_unbiased / denom; r_p[ii] = r_p[ii] - (lr * update); } else { // weight decay r_m[ii] = beta1 * r_m[ii] + (1 - beta1) * r_g[ii]; r_v[ii] = beta2 * r_v[ii] + (1 - beta2) * r_g[ii] * r_g[ii]; MATH_T next_m_unbiased = r_m[ii] / beta1_correction; MATH_T next_v_unbiased = r_v[ii] / beta2_correction; MATH_T denom = sqrtf(next_v_unbiased) + epsilon; MATH_T update = (next_m_unbiased / denom) + (decay * r_p[ii]); r_p[ii] = r_p[ii] - (lr * update); } } #pragma unroll for (int ii = 0; ii < ILP; ii++) { int i = i_start + threadIdx.x + ii * blockDim.x; if (i < n && i < chunk_size) { p[i] = r_p[ii]; m[i] = r_m[ii]; v[i] = r_v[ii]; } } } } }; void multi_tensor_adam_cuda( int chunk_size, at::Tensor noop_flag, std::vector> tensor_lists, const float lr, const float beta1, const float beta2, const float epsilon, const int step, const int mode, const int bias_correction, const float weight_decay) { using namespace at; // Handle bias correction mode float bias_correction1 = 1.0f, bias_correction2 = 1.0f; if (bias_correction == 1) { bias_correction1 = 1 - std::pow(beta1, step); bias_correction2 = 1 - std::pow(beta2, step); } // Assume single type across p,g,m1,m2 now DISPATCH_DOUBLE_FLOAT_AND_HALF( tensor_lists[0][0].scalar_type(), 0, "adam", multi_tensor_apply<4>( BLOCK_SIZE, chunk_size, noop_flag, tensor_lists, AdamFunctor(), beta1, beta2, bias_correction1, bias_correction2, epsilon, lr, (adamMode_t)mode, weight_decay);) AT_CUDA_CHECK(cudaGetLastError()); }