from typing import Any, Tuple import torch import torch.distributed as dist from torch import Tensor from colossalai.context.parallel_mode import ParallelMode from colossalai.core import global_context as gpc from colossalai.utils import get_current_device from torch.cuda.amp import custom_bwd, custom_fwd def matmul_2d(a, b, summa_dim, out_shape, row_rank=None, col_rank=None, row_parallel_mode=ParallelMode.PARALLEL_2D_ROW, col_parallel_mode=ParallelMode.PARALLEL_2D_COL, ): """Matrix multiplication for 2D parallelism :param a: matrix :math:`A` :type a: torch.tensor :param b: matrix :math:`B` :type b: torch.tensor :param summa_dim: dimension of SUMMA fo 2D parallelism :type summa_dim: int :param out_shape: shape of output tensor :type out_shape: tuple :param row_rank: the rank of row, defaults to None :type row_rank: int, optional :param col_rank: the rank of column, defaults to None :type col_rank: int, optional :param row_parallel_mode: row parallel mode, defaults to ParallelMode.PARALLEL_2D_ROW :type row_parallel_mode: str, optional :param col_parallel_mode: column parallel mode, defaults to ParallelMode.PARALLEL_2D_COL :type col_parallel_mode: str, optional :return: :math:`C = AB` :rtype: torch.tensor """ if row_rank is None: row_rank = gpc.get_local_rank(col_parallel_mode) if col_rank is None: col_rank = gpc.get_local_rank(row_parallel_mode) data_parallel_rank = 0 if not gpc.is_initialized( ParallelMode.DATA) else gpc.get_local_rank(ParallelMode.DATA) pipeline_parallel_rank = 0 if not gpc.is_initialized(ParallelMode.PIPELINE) else gpc.get_local_rank( ParallelMode.PIPELINE) pipeline_parallel_size = 1 if not gpc.is_initialized(ParallelMode.PIPELINE) else gpc.get_world_size( ParallelMode.PIPELINE) tensor_parallel_size = summa_dim ** 2 return Matmul_AB_2D(a, b, summa_dim, out_shape, row_rank, col_rank, row_parallel_mode, col_parallel_mode, data_parallel_rank, pipeline_parallel_rank, pipeline_parallel_size, tensor_parallel_size ) class Matmul_AB_2D(torch.autograd.Function): """Matrix multiplication for :math:`C = AB` """ @staticmethod @custom_fwd(cast_inputs=torch.float16) def forward(ctx: Any, A: Tensor, B: Tensor, summa_dim: int, out_shape: Tuple[int, ...], row_rank: int, col_rank: int, row_parallel_mode: ParallelMode, col_parallel_mode: ParallelMode, data_parallel_rank: int, pipeline_parallel_rank: int, pipeline_parallel_size: int, tensor_parallel_size: int) -> Tensor: # A: [b / q, s, h / q] -> [(b * s) / q, h / q] # B: [h / q, s / q] # C: [b / q, s, s / q] -> [(b * s) / q, s / q] assert A.shape[-1] == B.shape[-2], \ 'Invalid shapes: A={}, B={} for AB.'.format(A.shape, B.shape) if ctx: ctx.save_for_backward(A, B) A_shape = A.shape A = A.reshape((-1, A_shape[-1])).contiguous() B_shape = B.shape B = B.reshape((-1, B_shape[-1])).contiguous() C_shape = (A.shape[0], B.shape[-1]) C = torch.zeros(C_shape, dtype=A.dtype, device=get_current_device()) A_list = [torch.empty_like(A) for _ in range(gpc.get_world_size(row_parallel_mode)-1)] B_list = [torch.empty_like(B) for _ in range(gpc.get_world_size(col_parallel_mode)-1)] A_list.insert(gpc.get_local_rank(row_parallel_mode), A) B_list.insert(gpc.get_local_rank(col_parallel_mode), B) op_a = dist.all_gather(A_list, A, group=gpc.get_group(row_parallel_mode), async_op=True) op_a.wait() op_b = dist.all_gather(B_list, B, group=gpc.get_group(col_parallel_mode), async_op=True) for op in [op_a, op_b]: op.wait() for i in range(summa_dim): src_a = i + summa_dim * row_rank src_b = i + summa_dim * col_rank src_a = src_a % summa_dim src_b = src_b % summa_dim A_temp = A_list[src_a] B_temp = B_list[src_b] torch.addmm(C, A_temp, B_temp, out=C) out = C.reshape(out_shape) if ctx: ctx.summa_dim = summa_dim ctx.row_rank = row_rank ctx.col_rank = col_rank ctx.row_parallel_mode = row_parallel_mode ctx.col_parallel_mode = col_parallel_mode ctx.A_shape = A_shape ctx.B_shape = B_shape ctx.data_parallel_rank = data_parallel_rank ctx.pipeline_parallel_rank = pipeline_parallel_rank ctx.pipeline_parallel_size = pipeline_parallel_size ctx.tensor_parallel_size = tensor_parallel_size return out @staticmethod @custom_bwd def backward(ctx: Any, output_grad: Tensor) -> Tuple[Tensor, ...]: A, B = ctx.saved_tensors with torch.no_grad(): A_grad = Matmul_ABT_2D.apply( output_grad, B, ctx.summa_dim, ctx.A_shape, ctx.row_rank, ctx.col_rank, ctx.row_parallel_mode, ctx.col_parallel_mode, ctx.data_parallel_rank, ctx.pipeline_parallel_rank, ctx.pipeline_parallel_size, ctx.tensor_parallel_size ) B_grad = Matmul_ATB_2D.apply( A, output_grad, ctx.summa_dim, ctx.B_shape, ctx.row_rank, ctx.col_rank, ctx.row_parallel_mode, ctx.col_parallel_mode, ctx.data_parallel_rank, ctx.pipeline_parallel_rank, ctx.pipeline_parallel_size, ctx.tensor_parallel_size ) return A_grad, B_grad, None, None, None, None, None, None, None, None, None, None class Matmul_ABT_2D(torch.autograd.Function): """Matrix multiplication for :math:`C = AB^T` """ @staticmethod @custom_fwd(cast_inputs=torch.float16) def forward(ctx: Any, A: Tensor, B: Tensor, summa_dim: int, out_shape: Tuple[int, ...], row_rank: int, col_rank: int, row_parallel_mode: ParallelMode, col_parallel_mode: ParallelMode, data_parallel_rank: int, pipeline_parallel_rank: int, pipeline_parallel_size: int, tensor_parallel_size: int ) -> Tensor: assert A.shape[-1] == B.shape[-1], \ 'Invalid shapes: A={}, B={} for ABT.'.format(A.shape, B.shape) if ctx: ctx.save_for_backward(A, B) A_shape = A.shape A = A.reshape((-1, A_shape[-1])) B_shape = B.shape B = B.reshape((-1, B_shape[-1])) C_shape = (A.shape[0], B.shape[0]) C = torch.empty(C_shape, dtype=A.dtype, device=get_current_device()) for i in range(summa_dim): B_temp = B.clone() # C_temp = torch.zeros(C_shape, dtype=C.dtype, device=get_current_device()) src_b = col_rank + summa_dim * i + data_parallel_rank * pipeline_parallel_size * tensor_parallel_size + \ pipeline_parallel_rank * tensor_parallel_size dist.broadcast(B_temp, src=src_b, group=gpc.get_group(col_parallel_mode)) C_temp = torch.matmul(A, B_temp.transpose(0, 1)) src_c = i + summa_dim * row_rank + data_parallel_rank * pipeline_parallel_size * tensor_parallel_size + \ pipeline_parallel_rank * tensor_parallel_size dist.reduce(C_temp, dst=src_c, group=gpc.get_group(row_parallel_mode)) if i == col_rank: C = C_temp.clone() out = C.reshape(out_shape) if ctx: ctx.summa_dim = summa_dim ctx.row_rank = row_rank ctx.col_rank = col_rank ctx.row_parallel_mode = row_parallel_mode ctx.col_parallel_mode = col_parallel_mode ctx.A_shape = A_shape ctx.B_shape = B_shape ctx.data_parallel_rank = data_parallel_rank ctx.pipeline_parallel_rank = pipeline_parallel_rank ctx.pipeline_parallel_size = pipeline_parallel_size ctx.tensor_parallel_size = tensor_parallel_size return out @staticmethod @custom_bwd def backward(ctx: Any, output_grad: Tensor) -> Tuple[Tensor, ...]: A, B = ctx.saved_tensors with torch.no_grad(): A_grad = Matmul_AB_2D.apply( output_grad, B, ctx.summa_dim, ctx.A_shape, ctx.row_rank, ctx.col_rank, ctx.row_parallel_mode, ctx.col_parallel_mode, ctx.data_parallel_rank, ctx.pipeline_parallel_rank, ctx.pipeline_parallel_size, ctx.tensor_parallel_size ) B_grad = Matmul_ATB_2D.apply( output_grad, A, ctx.summa_dim, ctx.B_shape, ctx.row_rank, ctx.col_rank, ctx.row_parallel_mode, ctx.col_parallel_mode, ctx.data_parallel_rank, ctx.pipeline_parallel_rank, ctx.pipeline_parallel_size, ctx.tensor_parallel_size ) return A_grad, B_grad, None, None, None, None, None, None, None, None, None, None class Matmul_ATB_2D(torch.autograd.Function): """Matrix multiplication for :math:`C = A^TB` """ @staticmethod @custom_fwd(cast_inputs=torch.float16) def forward(ctx: Any, A: Tensor, B: Tensor, summa_dim: int, out_shape: Tuple[int, ...], row_rank: int, col_rank: int, row_parallel_mode: ParallelMode, col_parallel_mode: ParallelMode, data_parallel_rank: int, pipeline_parallel_rank: int, pipeline_parallel_size: int, tensor_parallel_size: int ) -> Tensor: assert A.shape[-2] == B.shape[-2], \ 'Invalid shapes: A={}, B={} for ATB.'.format(A.shape, B.shape) if ctx: ctx.save_for_backward(A, B) A_shape = A.shape A = A.reshape((-1, A_shape[-1])) B_shape = B.shape B = B.reshape((-1, B_shape[-1])) C_shape = (A.shape[-1], B.shape[-1]) C = torch.empty(C_shape, dtype=A.dtype, device=get_current_device()) for i in range(summa_dim): A_temp = A.clone() # C_temp = torch.zeros(C_shape, dtype=C.dtype, device=get_current_device()) src_a = i + summa_dim * row_rank + data_parallel_rank * pipeline_parallel_size * tensor_parallel_size + \ pipeline_parallel_rank * tensor_parallel_size dist.broadcast(A_temp, src=src_a, group=gpc.get_group(row_parallel_mode)) C_temp = torch.matmul(A_temp.transpose(0, 1), B) src_c = col_rank + summa_dim * i + data_parallel_rank * pipeline_parallel_size * tensor_parallel_size + \ pipeline_parallel_rank * tensor_parallel_size dist.reduce(C_temp, dst=src_c, group=gpc.get_group(col_parallel_mode)) if i == row_rank: C = C_temp.clone() out = C.reshape(out_shape) if ctx: ctx.summa_dim = summa_dim ctx.row_rank = row_rank ctx.col_rank = col_rank ctx.row_parallel_mode = row_parallel_mode ctx.col_parallel_mode = col_parallel_mode ctx.A_shape = A_shape ctx.B_shape = B_shape ctx.data_parallel_rank = data_parallel_rank ctx.pipeline_parallel_rank = pipeline_parallel_rank ctx.pipeline_parallel_size = pipeline_parallel_size ctx.tensor_parallel_size = tensor_parallel_size return out @staticmethod @custom_bwd def backward(ctx: Any, output_grad: Tensor) -> Tuple[Tensor, ...]: A, B = ctx.saved_tensors with torch.no_grad(): A_grad = Matmul_ABT_2D.apply( B, output_grad, ctx.summa_dim, ctx.A_shape, ctx.row_rank, ctx.col_rank, ctx.row_parallel_mode, ctx.col_parallel_mode, ctx.data_parallel_rank, ctx.pipeline_parallel_rank, ctx.pipeline_parallel_size, ctx.tensor_parallel_size ) B_grad = Matmul_AB_2D.apply( A, output_grad, ctx.summa_dim, ctx.B_shape, ctx.row_rank, ctx.col_rank, ctx.row_parallel_mode, ctx.col_parallel_mode, ctx.data_parallel_rank, ctx.pipeline_parallel_rank, ctx.pipeline_parallel_size, ctx.tensor_parallel_size ) return A_grad, B_grad, None, None, None, None, None, None, None, None, None, None class Add_Bias_2D(torch.autograd.Function): """Matrix add bias: :math:`C = A + b` """ @staticmethod @custom_fwd(cast_inputs=torch.float16) def forward(ctx: Any, input: Tensor, bias: Tensor, output_size_per_partition: int, row_rank: int, col_rank: int, row_parallel_mode: ParallelMode, col_parallel_mode: ParallelMode, skip_bias_add: bool, data_parallel_rank: int, pipeline_parallel_rank: int, pipeline_parallel_size: int, tensor_parallel_size: int ) -> Tensor: if row_rank == 0: bias_temp = bias.clone() else: bias_temp = torch.zeros( output_size_per_partition, dtype=bias.dtype, device=get_current_device()) src_rank = col_rank + data_parallel_rank * pipeline_parallel_size * tensor_parallel_size + \ pipeline_parallel_rank * tensor_parallel_size dist.broadcast(bias_temp, src=src_rank, group=gpc.get_group(col_parallel_mode)) ctx.row_rank = row_rank ctx.col_rank = col_rank ctx.row_parallel_mode = row_parallel_mode ctx.col_parallel_mode = col_parallel_mode ctx.bias = skip_bias_add ctx.data_parallel_rank = data_parallel_rank ctx.pipeline_parallel_rank = pipeline_parallel_rank ctx.pipeline_parallel_size = pipeline_parallel_size ctx.tensor_parallel_size = tensor_parallel_size if skip_bias_add: return bias_temp else: output = input + bias_temp return output @staticmethod @custom_bwd def backward(ctx: Any, output_grad: Tensor) -> Tuple[Tensor, ...]: row_rank = ctx.row_rank col_rank = ctx.col_rank row_parallel_mode = ctx.row_parallel_mode col_parallel_mode = ctx.col_parallel_mode data_parallel_rank = ctx.data_parallel_rank pipeline_parallel_rank = ctx.pipeline_parallel_rank pipeline_parallel_size = ctx.pipeline_parallel_size tensor_parallel_size = ctx.tensor_parallel_size if ctx.bias: dst_rank = col_rank + data_parallel_rank * pipeline_parallel_size * tensor_parallel_size + \ pipeline_parallel_rank * tensor_parallel_size dist.reduce(output_grad, dst=dst_rank, group=gpc.get_group(col_parallel_mode)) if row_rank == 0: return None, output_grad, None, None, None, None, None, None, None, None, None, None else: # for compatibility with zero optimizer, no grad should be None grad_tmp = torch.zeros_like(output_grad) return None, grad_tmp, None, None, None, None, None, None, None, None, None, None else: reduce_dim = tuple(range(output_grad.ndim - 1)) reduce = torch.sum(output_grad, dim=reduce_dim) dst_rank = col_rank + data_parallel_rank * pipeline_parallel_size * tensor_parallel_size + \ pipeline_parallel_rank * tensor_parallel_size dist.reduce(reduce, dst=dst_rank, group=gpc.get_group(col_parallel_mode)) if row_rank == 0: return output_grad, reduce, None, None, None, None, None, None, None, None, None, None else: # for compatibility with zero optimizer, no grad should be None reduce_tmp = torch.zeros_like(reduce) return output_grad, reduce_tmp, None, None, None, None, None, None, None, None, None, None class _LayerNorm_2D(torch.autograd.Function): @staticmethod @custom_fwd(cast_inputs=torch.float32) def forward(ctx: Any, input: Tensor, E_x: Tensor, Var_x: Tensor, hidden_size: int, row_parallel_mode: ParallelMode, col_parallel_mode: ParallelMode) -> Tensor: input = input - E_x # in here, input = x - E[x], Var_x = 1 / sqrt(Var[x] + eps) ctx.normalized_shape = hidden_size output = input * Var_x ctx.save_for_backward(output, Var_x) ctx.row_parallel_mode = row_parallel_mode ctx.col_parallel_mode = col_parallel_mode return output @staticmethod @custom_bwd def backward(ctx: Any, output_grad: Tensor) -> Tuple[Tensor, ...]: row_parallel_mode = ctx.row_parallel_mode col_parallel_mode = ctx.col_parallel_mode x, Var_x = ctx.saved_tensors # in here, Var_x = 1 / sqrt(Var[x] + eps), x = (x - E[x]) * Var_x output_grad_sum = torch.sum(output_grad, dim=-1, keepdim=True) torch.distributed.all_reduce( output_grad_sum, group=gpc.get_group(row_parallel_mode)) output_grad_sum /= ctx.normalized_shape output_grad_mul_x_sum = torch.sum( output_grad * x, dim=-1, keepdim=True) torch.distributed.all_reduce( output_grad_mul_x_sum, group=gpc.get_group(row_parallel_mode)) output_grad_mul_x_sum /= ctx.normalized_shape input_grad = output_grad.clone() input_grad -= x * output_grad_mul_x_sum input_grad -= output_grad_sum input_grad *= Var_x return input_grad, None, None, None, None, None # class Sum_2D(torch.autograd.Function): # # @staticmethod # def forward(ctx: Any, # inputs: Tensor, # dim: int, # summa_dim: int, # row_parallel_mode: ParallelMode, # keepdim: bool = False) -> Tensor: # # input: [b/q, s, h/q] # empty_cache() # ctx.save_for_backward(inputs) # # sum: [b/q, s] # out = torch.sum(inputs, dim=dim, keepdim=keepdim) # torch.distributed.all_reduce(out, group=gpc.get_group(row_parallel_mode)) # return out # # @staticmethod # def backward(ctx: Any, output_grad: Tensor) -> Tuple[Tensor, ...]: # with torch.no_grad(): # inputs = ctx.saved_tensors # input_grad = torch.ones(inputs.shape, dtype=output_grad.dtype) # return input_grad, None, None, None, None, None class AllGatherLast(torch.autograd.Function): @staticmethod @custom_fwd(cast_inputs=torch.float16) def forward(ctx: Any, inputs: Tensor, summa_dim: int, col_parallel_mode: ParallelMode) -> Tensor: ctx.summa_dim = summa_dim ctx.row_rank = gpc.get_local_rank(col_parallel_mode) last_dim = summa_dim * inputs.size(-1) outputs_shape = (last_dim,) + inputs.shape[:-1] outputs = torch.empty( outputs_shape, dtype=inputs.dtype, device=get_current_device()) dist.all_gather( list(outputs.chunk(summa_dim, dim=0)), inputs.permute(2, 0, 1).contiguous(), group=gpc.get_group(col_parallel_mode) ) outputs = outputs.permute(1, 2, 0).contiguous() return outputs @staticmethod @custom_bwd def backward(ctx: Any, output_grad: Tensor) -> Tuple[Tensor, ...]: grad = output_grad.chunk(ctx.summa_dim, dim=-1)[ctx.row_rank] return grad.contiguous(), None, None class SplitFirst(torch.autograd.Function): @staticmethod @custom_fwd(cast_inputs=torch.float16) def forward(ctx: Any, inputs: Tensor, summa_dim: int, col_parallel_mode: ParallelMode) -> Tensor: ctx.summa_dim = summa_dim ctx.batch_size = inputs.size(0) ctx.para_mode = col_parallel_mode row_rank = gpc.get_local_rank(col_parallel_mode) outputs = inputs.chunk(summa_dim, dim=0)[row_rank] return outputs @staticmethod @custom_bwd def backward(ctx: Any, output_grad: Tensor) -> Tuple[Tensor, ...]: grad_shape = (ctx.batch_size,) + output_grad.shape[1:] grad = torch.empty( grad_shape, dtype=output_grad.dtype, device=get_current_device()) dist.all_gather( list(grad.chunk(ctx.summa_dim, dim=0)), output_grad.contiguous(), group=gpc.get_group(ctx.para_mode) ) return grad, None, None