from enum import Enum from typing import Optional import torch class TensorState(Enum): FREE = 0 HOLD = 1 HOLD_AFTER_FWD = 2 HOLD_AFTER_BWD = 3 COMPUTE = 4 class StatefulTensor(object): """A Structure stores a Torch Tensor and labeled states. Inspired from the paper: PatrickStar: Parallel Training of Pre-trained Models via Chunk-based Memory Management https://arxiv.org/abs/2108.05818 """ def __init__(self, tensor: torch.Tensor, state: Optional[TensorState] = TensorState.HOLD) -> None: self._state = state self._payload = tensor if self._state == TensorState.FREE: assert self._payload is None, f"payload has to None if {self._state}" def data_ptr(self): if self._payload is None: return None return self._payload.data_ptr() @property def state(self) -> TensorState: return self._state def set_null(self) -> None: self._state = TensorState.FREE self._payload = None def is_null(self) -> bool: if self._state == TensorState.FREE: assert self._payload is None return True return False def trans_state(self, state: TensorState) -> None: self._state = state if state == TensorState.FREE: self._payload = None @property def payload(self) -> int: return self._payload def copy_payload(self, tensor) -> int: self._payload.view(-1).copy_(tensor.view(-1)) def reset_payload(self, tensor) -> int: del self._payload self._payload = tensor self.trans_state(TensorState.HOLD) @property def device(self) -> torch.device: return self._payload.device @property def dtype(self) -> torch.dtype: assert self._payload.dtype == self._origin_dtype return self._origin_dtype def to(self, device: torch.device): raise RuntimeError("Use colo_model_tensor_move install of call .to() on ShardedTensor") def to_(self, device: torch.device): raise RuntimeError("Use colo_model_tensor_move install of call .to_() on ShardedTensor") @property def shape(self): return self._payload.shape