import torch from colossalai.utils.model.lazy_init_context import LazyInitContext from torchvision.models import resnet34 import random import numpy as np MANUAL_SEED = 0 random.seed(MANUAL_SEED) np.random.seed(MANUAL_SEED) torch.manual_seed(MANUAL_SEED) def test_lazy_init(): cpu_rng_state = torch.get_rng_state() origin_model = resnet34(num_classes=10) origin_param_dict = dict(origin_model.named_parameters()) torch.set_rng_state(cpu_rng_state) ctx = LazyInitContext() with ctx: model = resnet34(num_classes=10) for param in model.parameters(): assert param.is_meta for buffer in model.buffers(): assert buffer.is_meta ctx.lazy_init_parameters(model) for param in model.parameters(): assert not param.is_meta for buffer in model.buffers(): assert not buffer.is_meta param_dict = dict(model.named_parameters()) for key in origin_param_dict.keys(): assert origin_param_dict[key].data.equal(param_dict[key].data) if __name__ == '__main__': test_lazy_init()