import math from typing import Callable import torch import torch.nn.functional as F from colossalai.context import seed from colossalai.nn import init as init from colossalai.registry import LAYERS from colossalai.utils.cuda import get_current_device from torch import Tensor from torch import nn as nn from ..utils import to_2tuple def drop_path(x, drop_prob: float = 0., training: bool = False): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). This is the same as the DropConnect impl I created for EfficientNet, etc networks, however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper... See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the argument. Args: drop_prob (float, optional): probability of dropping path, defaults 0.0. training (bool, optional): whether in training progress, defaults False. """ if drop_prob == 0. or not training: return x keep_prob = 1 - drop_prob shape = (x.shape[0], ) + (1, ) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device) random_tensor.floor_() # binarize output = x.div(keep_prob) * random_tensor return output class DropPath(nn.Module): """ Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). Adapted from https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/layers/drop.py Args: drop_prob (float, optional): probability of dropping path, defaults None. """ def __init__(self, drop_prob=None): super(DropPath, self).__init__() self.drop_prob = drop_prob def forward(self, x): return drop_path(x, self.drop_prob, self.training) class WrappedDropout(nn.Module): r"""Same as torch.nn.Dropout. But it is wrapped with the context of seed manager. During training, randomly zeroes some elements of the input tensor with probability p using samples from a Bernoulli distribution. Each channel will be zeroed out independently on every forward call. Furthermore, the outputs are scaled by a factor of 1/(1-p) during training. This means that during evaluation the module simply computes an identity function. Args: p (float, optional): probability of an element to be zeroed, defaults 0.5. inplace (bool, optional): whether to do dropout in-place, default to be False. mode (:class:`colossalai.context.ParallelMode`): The chosen parallel mode. Note: The parallel_mode should be concluded in ``ParallelMode``. More details about ``ParallelMode`` could be found in `parallel_mode `_ """ def __init__(self, p: float = 0.5, inplace: bool = False, mode=None): super().__init__() if p < 0 or p > 1: raise ValueError("dropout probability has to be between 0 and 1, " "but got {}".format(p)) self.p = p self.inplace = inplace if mode is None: self.func = self.nonefunc else: self.func = self.normalfunc self.mode = mode def nonefunc(self, inputs): return F.dropout(inputs, self.p, self.training, self.inplace) def normalfunc(self, inputs): with seed(self.mode): return F.dropout(inputs, self.p, self.training, self.inplace) def forward(self, inputs): return self.func(inputs) class WrappedDropPath(nn.Module): r"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). Here, it is wrapped with the context of seed manager. Args: p (float, optional): probability of dropping path, defaults 0.0. mode (:class:`colossalai.context.ParallelMode`): The chosen parallel mode. Note: The parallel_mode should be concluded in ``ParallelMode``. More details about ``ParallelMode`` could be found in `parallel_mode `_ """ def __init__(self, p: float = 0., mode=None): super().__init__() self.p = p self.mode = mode if self.mode is None: self.func = self.nonefunc else: self.func = self.normalfunc self.mode = mode def nonefunc(self, inputs): return drop_path(inputs, self.p, self.training) def normalfunc(self, inputs): with seed(self.mode): return drop_path(inputs, self.p, self.training) def forward(self, inputs): return self.func(inputs) @LAYERS.register_module class VanillaPatchEmbedding(nn.Module): r""" 2D Image to Patch Embedding Args: img_size (int): image size. patch_size (int): patch size. in_chans (int): number of channels of input image. embed_size (int): size of embedding. dtype (:class:`torch.dtype`, optional): The dtype of parameters, defaults to None. flatten (bool, optional): whether to flatten output tensor, defaults to True. weight_initializer (:class:`typing.Callable`, optional): The initializer of weight, defaults to kaiming uniform initializer. bias_initializer (:class:`typing.Callable`, optional): The initializer of bias, defaults to xavier uniform initializer. position_embed_initializer (:class:`typing.Callable`, optional): The initializer of position embedding, defaults to zeros initializer. More details about initializer please refer to `init `_. """ def __init__(self, img_size: int, patch_size: int, in_chans: int, embed_size: int, flatten: bool = True, dtype: torch.dtype = None, weight_initializer: Callable = init.kaiming_uniform_(a=math.sqrt(5)), bias_initializer: Callable = init.xavier_uniform_(a=1, scale=1), position_embed_initializer: Callable = init.zeros_()): super().__init__() img_size = to_2tuple(img_size) patch_size = to_2tuple(patch_size) self.img_size = img_size self.patch_size = patch_size self.grid_size = (img_size[0] // patch_size[0], img_size[1] // patch_size[1]) self.num_patches = self.grid_size[0] * self.grid_size[1] self.flatten = flatten self.weight = nn.Parameter( torch.empty((embed_size, in_chans, *self.patch_size), device=get_current_device(), dtype=dtype)) self.bias = nn.Parameter(torch.empty(embed_size, device=get_current_device(), dtype=dtype)) self.cls_token = nn.Parameter(torch.zeros((1, 1, embed_size), device=get_current_device(), dtype=dtype)) self.pos_embed = nn.Parameter( torch.zeros((1, self.num_patches + 1, embed_size), device=get_current_device(), dtype=dtype)) self.reset_parameters(weight_initializer, bias_initializer, position_embed_initializer) def reset_parameters(self, weight_initializer, bias_initializer, position_embed_initializer): fan_in, fan_out = nn.init._calculate_fan_in_and_fan_out(self.weight) weight_initializer(self.weight, fan_in=fan_in, fan_out=fan_out) bias_initializer(self.bias, fan_in=fan_in) position_embed_initializer(self.pos_embed) def forward(self, input_: Tensor) -> Tensor: B, C, H, W = input_.shape assert H == self.img_size[0] and W == self.img_size[1], \ f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})." output = F.conv2d(input_, self.weight, self.bias, stride=self.patch_size) if self.flatten: output = output.flatten(2).transpose(1, 2) # BCHW -> BNC cls_token = self.cls_token.expand(output.shape[0], -1, -1) output = torch.cat((cls_token, output), dim=1) output = output + self.pos_embed return output @LAYERS.register_module class VanillaClassifier(nn.Module): r"""Dense linear classifier. Args: in_features (int): size of each input sample. num_classes (int): number of classes. weight (:class:`torch.nn.Parameter`, optional): weight of the classifier, defaults to None. dtype (:class:`torch.dtype`, optional): The dtype of parameters, defaults to None. flatten (bool, optional): whether to flatten output tensor, defaults to True. weight_initializer (:class:`typing.Callable`, optional): The initializer of weight, defaults to kaiming uniform initializer. bias_initializer (:class:`typing.Callable`, optional): The initializer of bias, defaults to xavier uniform initializer. More details about initializer please refer to `init `_. """ def __init__(self, in_features: int, num_classes: int, weight: nn.Parameter = None, bias: bool = True, dtype: torch.dtype = None, weight_initializer: Callable = init.kaiming_uniform_(a=math.sqrt(5)), bias_initializer: Callable = init.xavier_uniform_(a=1, scale=1)): super().__init__() self.in_features = in_features self.num_classes = num_classes if weight is not None: self.weight = weight self.has_weight = False else: self.weight = nn.Parameter( torch.empty(self.num_classes, self.in_features, device=get_current_device(), dtype=dtype)) self.has_weight = True if bias: self.bias = nn.Parameter(torch.zeros(self.num_classes, device=get_current_device(), dtype=dtype)) else: self.bias = None self.reset_parameters(weight_initializer, bias_initializer) def reset_parameters(self, weight_initializer, bias_initializer): fan_in, fan_out = self.in_features, self.num_classes if self.has_weight: weight_initializer(self.weight, fan_in=fan_in, fan_out=fan_out) if self.bias is not None: bias_initializer(self.bias, fan_in=fan_in) def forward(self, input_: Tensor) -> Tensor: return F.linear(input_, self.weight, self.bias) @LAYERS.register_module class VanillaLayerNorm(nn.Module): r""" Layer Normalization for colossalai Args: normalized_shape (int): input shape from an expected input of size. :math:`[* \times \text{normalized_shape}[0] \times \text{normalized_shape}[1] \times \ldots \times \text{normalized_shape}[-1]]` If a single integer is used, it is treated as a singleton list, and this module will normalize over the last dimension which is expected to be of that specific size. eps (float): a value added to the denominator for numerical stability, defaults to 1e-05. bias (bool, optional): Whether to add a bias, defaults to ``True``. dtype (:class:`torch.dtype`, optional): The dtype of parameters, defaults to None. """ def __init__(self, normalized_shape: int, eps=1e-05, bias=True, dtype=None): super().__init__() self.normalized_shape = (normalized_shape,) self.variance_epsilon = eps factory_kwargs = {'device': get_current_device(), 'dtype': dtype} self.weight = nn.Parameter(torch.ones(normalized_shape, **factory_kwargs)) if bias: self.bias = nn.Parameter(torch.zeros(normalized_shape, **factory_kwargs)) else: self.bias = None def forward(self, x: Tensor) -> Tensor: return F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.variance_epsilon)