from typing import Callable, List, Optional, Set, Union import torch import torch.nn as nn from colossalai.cluster import ProcessGroupMesh from colossalai.pipeline.schedule.generate import GenerateSchedule from colossalai.pipeline.stage_manager import PipelineStageManager from colossalai.shardformer import ShardConfig, ShardFormer from colossalai.shardformer.policies.base_policy import Policy from .microbatch_manager import MicroBatchManager class PPInferEngine: ''' PPInferEngine is a class that handles the pipeline parallel inference. Args: pp_size (int): the number of pipeline stages. pp_model (`nn.Module`): the model already in pipeline parallelism style. model (`nn.Module`): the model not in pipeline style, and will be modified with `ShardFormer`. model_policy (`colossalai.shardformer.policies.base_policy.Policy`): the policy to shardformer model. micro_batch_size (int): the micro batch size. micro_batch_buffer_size (int): the buffer size for micro batch. Normally, it should be the same as the number of pipeline stages. new_length (int): the new length of the input sequence. early_stopping (bool): whether to stop early. Example: ```python from colossalai.ppinference import PPInferEngine from transformers import GPT2LMHeadModel, GPT2Tokenizer model = transformers.GPT2LMHeadModel.from_pretrained('gpt2') # assume the model is infered with 4 pipeline stages inferengine = PPInferEngine(pp_size=4, model=model, model_policy={Your own policy for pipeline sharding}) input = ["Hello, my dog is cute, and I like"] tokenized_input = tokenizer(input, return_tensors='pt') output = engine.inference([tokenized_input]) ``` ''' def __init__( self, pp_size: int, dtype: str = 'fp16', pp_model: nn.Module = None, model: nn.Module = None, model_policy: Policy = None, new_length: int = 32, micro_batch_size: int = 1, micro_batch_buffer_size: int = None, verbose: bool = False, # TODO: implement early_stopping, and various gerneration options early_stopping: bool = False, do_sample: bool = False, num_beams: int = 1, ) -> None: assert pp_model or (model and model_policy), "Either pp_model or model with model_policy should be provided." self.pp_size = pp_size self.pg_mesh = ProcessGroupMesh(pp_size) self.stage_manager = PipelineStageManager(self.pg_mesh, 0, True) self.mb_manager = MicroBatchManager(self.stage_manager.stage, new_length, micro_batch_size, micro_batch_buffer_size or pp_size) self.verbose = verbose self.schedule = GenerateSchedule(self.stage_manager, self.mb_manager, verbose) assert dtype in ['fp16', 'fp32', 'bf16'], "dtype should be one of 'fp16', 'fp32', 'bf16'" if dtype == 'fp16': model.half() elif dtype == 'bf16': model.to(torch.bfloat16) self.model = pp_model or self._shardformer(model, model_policy) def inference(self, input_list): out, timestamp = self.schedule.generate_step(self.model, iter(input_list)) if self.verbose: return out, timestamp else: return out def _shardformer(self, model, model_policy): shardconfig = ShardConfig( tensor_parallel_process_group=None, pipeline_stage_manager=self.stage_manager, enable_tensor_parallelism=False, enable_fused_normalization=False, enable_all_optimization=False, enable_flash_attention=False, enable_jit_fused=False, enable_sequence_parallelism=False, ) shardformer = ShardFormer(shard_config=shardconfig) shard_model, _ = shardformer.optimize(model, model_policy) return shard_model.cuda()