import torch import torch.multiprocessing as mp from colossalai.pipeline.pipelinable import PipelinableContext from colossalai.testing import rerun_on_exception NUM_CHUNKS = 1 PIPELINE_SIZE = 2 class MLP(torch.nn.Module): def __init__(self, dim: int = 256): super().__init__() intermediate_dim = dim * 4 self.dense_1 = torch.nn.Linear(dim, intermediate_dim) self.activation = torch.nn.GELU() self.dense_2 = torch.nn.Linear(intermediate_dim, dim) self.dropout = torch.nn.Dropout(0.1) def forward(self, x): x = self.dense_1(x) x = self.activation(x) x = self.dense_2(x) x = self.dropout(x) return x def run_pipelinable(rank): pipelinable = PipelinableContext() with pipelinable: model = MLP() assert pipelinable.policy == "balanced" pipelinable.policy = "uniform" assert pipelinable.policy == "uniform" pipelinable.to_layer_list() assert pipelinable.layers_count == len(list(model.children())) pipeline_model_part_0 = pipelinable.partition(NUM_CHUNKS, PIPELINE_SIZE, 0) assert isinstance(pipeline_model_part_0, torch.nn.Module) pipeline_model_part_1 = pipelinable.partition(NUM_CHUNKS, PIPELINE_SIZE, 1) assert isinstance(pipeline_model_part_1, torch.nn.Module) layers_count_in_part_0 = len(list(pipeline_model_part_0._module_list)) layers_count_in_part_1 = len(list(pipeline_model_part_1._module_list)) assert layers_count_in_part_0 + layers_count_in_part_1 == pipelinable.layers_count @rerun_on_exception(exception_type=mp.ProcessRaisedException, pattern=".*Address already in use.*") def test_pipelinable(): mp.spawn(run_pipelinable, nprocs=1) if __name__ == '__main__': test_pipelinable()